You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
My process crashes after 9 hours or so and rerunning
automl = AutoML(results_path=f"./model/{final_assets}_{shift_l}", mode="Optuna",
total_time_limit=48* 3600,
optuna_time_budget=3600)
I am getting the following error
TypeError: '<' not
supported between instances of 'float' and 'str'
File /anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/supervised/base_automl.py:485, in BaseAutoML._perform_model_stacking(self)
482 if self._fairness_metric is not None:
483 # get only fair models if we train with sensitive features
484 ldb = ldb[ldb["is_fair"]]
--> 485 ldb = ldb.sort_values(by="metric_value", ascending=True)
486 models_map = {m.get_name(): m for m in self._models if not m._is_stacked}
487 self._stacked_models = []
File /anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/sorting.py:483, in nargsort(items, kind, ascending, na_position, key, mask)
481 non_nans = non_nans[::-1]
482 non_nan_idx = non_nan_idx[::-1]
--> 483 indexer = non_nan_idx[non_nans.argsort(kind=kind)]
484 if not ascending:
485 indexer = indexer[::-1]
I had Pandas 2.1.3 but I also tried with 2.1.0 with the same error
!{sys.executable} -m pip install --upgrade xgboost==2.0.1
!{sys.executable} -m pip install pandas==2.1.0
!{sys.executable} -m pip install --upgrade mljar-supervised
Love this package so far by the way!
The text was updated successfully, but these errors were encountered:
My process crashes after 9 hours or so and rerunning
automl = AutoML(results_path=f"./model/{final_assets}_{shift_l}", mode="Optuna",
total_time_limit=48* 3600,
optuna_time_budget=3600)
I am getting the following error
TypeError: '<' not
supported between instances of 'float' and 'str'
File /anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/supervised/base_automl.py:485, in BaseAutoML._perform_model_stacking(self)
482 if self._fairness_metric is not None:
483 # get only fair models if we train with sensitive features
484 ldb = ldb[ldb["is_fair"]]
--> 485 ldb = ldb.sort_values(by="metric_value", ascending=True)
486 models_map = {m.get_name(): m for m in self._models if not m._is_stacked}
487 self._stacked_models = []
File /anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/frame.py:6955, in DataFrame.sort_values(self, by, axis, ascending, inplace, kind, na_position, ignore_index, key)
6952 if isinstance(ascending, (tuple, list)):
6953 ascending = ascending[0]
-> 6955 indexer = nargsort(
6956 k, kind=kind, ascending=ascending, na_position=na_position, key=key
6957 )
6958 else:
6959 if inplace:
File /anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/sorting.py:483, in nargsort(items, kind, ascending, na_position, key, mask)
481 non_nans = non_nans[::-1]
482 non_nan_idx = non_nan_idx[::-1]
--> 483 indexer = non_nan_idx[non_nans.argsort(kind=kind)]
484 if not ascending:
485 indexer = indexer[::-1]
I had Pandas 2.1.3 but I also tried with 2.1.0 with the same error
!{sys.executable} -m pip install --upgrade xgboost==2.0.1
!{sys.executable} -m pip install pandas==2.1.0
!{sys.executable} -m pip install --upgrade mljar-supervised
Love this package so far by the way!
The text was updated successfully, but these errors were encountered: