From 1e6b0659c17a24404fd4dd69d005bda6c40d1968 Mon Sep 17 00:00:00 2001 From: Frank Schneider Date: Wed, 31 Jul 2024 16:26:01 +0200 Subject: [PATCH 1/5] Adds functionality to compute speedups Geometric means across individual workload speedups between two algorithms. --- scoring/compute_speedups.py | 112 ++++++++++++++++++++++++++++++++++++ 1 file changed, 112 insertions(+) create mode 100644 scoring/compute_speedups.py diff --git a/scoring/compute_speedups.py b/scoring/compute_speedups.py new file mode 100644 index 000000000..5fb5f259d --- /dev/null +++ b/scoring/compute_speedups.py @@ -0,0 +1,112 @@ +"""File to compute speedups (i.e. geometric means between runtimes).""" + +import pickle + +from absl import app +from absl import flags +import numpy as np +import pandas as pd +from performance_profile import BASE_WORKLOADS +from performance_profile import get_workloads_time_to_target +from scipy import stats + +flags.DEFINE_string('results_txt', None, 'Path to full scoring results file.') +flags.DEFINE_string( + 'base', + 'prize_qualification_baseline', + 'Base submission to compare to. Defaults to the `prize_qualification_baseline`.' +) +flags.DEFINE_string('comparison', None, 'Submission to compute the speedup of.') +flags.DEFINE_boolean('self_tuning_ruleset', + False, + 'Whether the self-tuning ruleset is being scored.') +flags.DEFINE_boolean('save_results', + False, + 'Whether to save the results to disk.') +FLAGS = flags.FLAGS + +MAX_BUDGETS = { + 'criteo1tb': 7703, + 'fastmri': 8859, + 'imagenet_resnet': 63_008, + 'imagenet_vit': 77_520, + 'librispeech_conformer': 61_068, + 'librispeech_deepspeech': 55_506, + 'ogbg': 18_477, + 'wmt': 48_151, +} + + +def replace_inf(row): + """Replace ifs with maximum runtime budget (+1 second). + + Args: + row (pd.Series): The original row. + + Returns: + pd.Series: The row with infs replaced. + """ + workload_name = row.name + # Factor of 3 for self-tuning ruleset + factor = 3 if FLAGS.self_tuning_ruleset else 1 + max_runtime_workload = factor * MAX_BUDGETS[workload_name] + row.replace(np.inf, max_runtime_workload + 1, inplace=True) + return row + + +def compute_speedup(): + """Compute speedup between two algorithms.""" + # Load results from disk + with open(FLAGS.results_txt, 'rb') as f: + results = pickle.load(f) + + # Compute median over runtimes for both training algorithms + base_results = get_workloads_time_to_target( + results[FLAGS.base], + FLAGS.base, + time_col="score", + self_tuning_ruleset=FLAGS.self_tuning_ruleset, + ) + comparison_results = get_workloads_time_to_target( + results[FLAGS.comparison], + FLAGS.comparison, + time_col="score", + self_tuning_ruleset=FLAGS.self_tuning_ruleset, + ) + + # Merge results + merged_results = pd.concat([base_results, comparison_results]).transpose() + + # Ignore workload variants (only consider base workloads) for speedup + merged_results = merged_results.loc[merged_results.index.isin(BASE_WORKLOADS)] + + # Replace infs with maximum runtime budget (+1 second) + merged_results = merged_results.apply(replace_inf, axis=1) + + # Compute speedup + merged_results['speedup'] = merged_results[ + f'{FLAGS.comparison}'] / merged_results[f'{FLAGS.base}'] + speedups = merged_results['speedup'].to_numpy() + mean_speedup = stats.gmean(speedups) # Geometric mean over workload speedups + + print(merged_results, end='\n\n') + print( + f"Average speedup of {FLAGS.comparison} compared to {FLAGS.base}: {mean_speedup} or roughly {(1-mean_speedup):.1%}" + ) + + if FLAGS.save_results: + # Optionally save results to disk + print("Saving results to disk...") + filename = f'{FLAGS.comparison}_vs_{FLAGS.base}_speedup_{(1-mean_speedup):.1%}.csv' + merged_results.to_csv(filename) + + +def main(_): + """Main function to compute speedup between two algorithms.""" + compute_speedup() + + +if __name__ == '__main__': + flags.mark_flag_as_required('results_txt') + flags.mark_flag_as_required('comparison') + app.run(main) From 3da063df83df5018ff64e4be9639ea7c8662679e Mon Sep 17 00:00:00 2001 From: Frank Schneider Date: Wed, 31 Jul 2024 16:26:38 +0200 Subject: [PATCH 2/5] Fix: Only consider workload variant times if they trained the base workload --- scoring/performance_profile.py | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/scoring/performance_profile.py b/scoring/performance_profile.py index 372684fe2..b77d69d05 100644 --- a/scoring/performance_profile.py +++ b/scoring/performance_profile.py @@ -307,6 +307,14 @@ def compute_performance_profiles(submissions, strict)) df = pd.concat(dfs) + # For each held-out workload set to inf if the base workload is inf + for workload in df.keys(): + if workload not in BASE_WORKLOADS: + # If base do not have finite score set variant score to inf + base_workload = get_base_workload_name(workload) + df[workload] = df.apply( + variant_criteria_filter(workload, base_workload), axis=1) + # Set score to inf if not within 4x of fastest submission best_scores = df.min(axis=0) df[df.apply(lambda x: x > 4 * best_scores, axis=1)] = np.inf From 5168eb5e2403e30321cf7c685c243b3147c11a16 Mon Sep 17 00:00:00 2001 From: Frank Schneider Date: Wed, 31 Jul 2024 16:45:04 +0200 Subject: [PATCH 3/5] Fix max_tau to 4.0 --- scoring/score_submissions.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scoring/score_submissions.py b/scoring/score_submissions.py index 22b978fd7..02ad82fc0 100644 --- a/scoring/score_submissions.py +++ b/scoring/score_submissions.py @@ -198,7 +198,7 @@ def main(_): results, time_col='score', min_tau=1.0, - max_tau=None, + max_tau=4.0, reference_submission_tag=None, num_points=100, scale='linear', From d6d6239f436a776d0f5cd908412837a93c1cc566 Mon Sep 17 00:00:00 2001 From: Frank Schneider Date: Thu, 29 Aug 2024 13:22:19 +0200 Subject: [PATCH 4/5] Update gitignore --- .gitignore | 1 + 1 file changed, 1 insertion(+) diff --git a/.gitignore b/.gitignore index 95d9fa6c1..d2e212366 100644 --- a/.gitignore +++ b/.gitignore @@ -20,6 +20,7 @@ algorithmic_efficiency/workloads/librispeech_conformer/work_dir *.vocab wandb/ *.txt +scoring/plots/ !scoring/test_data/experiment_dir/study_0/mnist_jax/trial_0/eval_measurements.csv !scoring/test_data/experiment_dir/study_0/mnist_jax/trial_1/eval_measurements.csv \ No newline at end of file From 414e82e21fc53960f53a0dec02273b9a5e167cd5 Mon Sep 17 00:00:00 2001 From: Frank Schneider Date: Thu, 29 Aug 2024 13:31:20 +0200 Subject: [PATCH 5/5] Fix scoring bug handeling nan values --- scoring/performance_profile.py | 21 +++++++++++++++++---- 1 file changed, 17 insertions(+), 4 deletions(-) diff --git a/scoring/performance_profile.py b/scoring/performance_profile.py index b77d69d05..32acae9ab 100644 --- a/scoring/performance_profile.py +++ b/scoring/performance_profile.py @@ -26,6 +26,7 @@ the dictionary of submissions. """ import itertools +import json import operator import os import re @@ -45,6 +46,10 @@ BASE_WORKLOADS = workloads_registry.BASE_WORKLOADS WORKLOAD_NAME_PATTERN = '(.*)(_jax|_pytorch)' BASE_WORKLOADS_DIR = 'algorithmic_efficiency/workloads/' +# Open json file to read heldout workloads +# TODO: This probably shouldn't be hardcoded but passed as an argument. +with open("held_out_workloads_algoperf_v05.json", "r") as f: + HELDOUT_WORKLOADS = json.load(f) # These global variables have to be set according to the current set of # workloads and rules for the scoring to be correct. # We do not use the workload registry since it contains test and development @@ -248,6 +253,9 @@ def filter(x): try: if x[variant_workload] == np.inf: return np.inf + # Also check for nan values (e.g. OOMs) + elif np.isnan(x[variant_workload]): + return np.inf else: return x[base_workload] except KeyError as e: @@ -306,8 +314,14 @@ def compute_performance_profiles(submissions, self_tuning_ruleset, strict)) df = pd.concat(dfs) - - # For each held-out workload set to inf if the base workload is inf + # Restrict to base and sampled held-out workloads + # (ignore the additional workload variants of the baseline + # as they cause issues when checking for nans in workload variants). + df = df[BASE_WORKLOADS + HELDOUT_WORKLOADS] + # Sort workloads alphabetically (for better display) + df = df.reindex(sorted(df.columns), axis=1) + + # For each held-out workload set to inf if the base workload is inf or nan for workload in df.keys(): if workload not in BASE_WORKLOADS: # If base do not have finite score set variant score to inf @@ -319,14 +333,13 @@ def compute_performance_profiles(submissions, best_scores = df.min(axis=0) df[df.apply(lambda x: x > 4 * best_scores, axis=1)] = np.inf - # For each held-out workload if variant target was not hit set submission to inf + # For each base workload if variant target was not hit set submission to inf for workload in df.keys(): if workload not in BASE_WORKLOADS: # If variants do not have finite score set base_workload score to inf base_workload = get_base_workload_name(workload) df[base_workload] = df.apply( variant_criteria_filter(base_workload, workload), axis=1) - df = df[BASE_WORKLOADS] if verbosity > 0: