From b24812ff74d1353a2d56d3cffb86952298836f04 Mon Sep 17 00:00:00 2001 From: Aaron Defazio Date: Thu, 5 Sep 2024 15:20:04 +0000 Subject: [PATCH] BN Fixes --- algorithmic_efficiency/pytorch_utils.py | 14 ++++++++------ .../librispeech_pytorch/models.py | 11 ++++++----- .../librispeech_pytorch/models.py | 10 +++++----- 3 files changed, 19 insertions(+), 16 deletions(-) diff --git a/algorithmic_efficiency/pytorch_utils.py b/algorithmic_efficiency/pytorch_utils.py index 4f6c254bd..2e5828912 100644 --- a/algorithmic_efficiency/pytorch_utils.py +++ b/algorithmic_efficiency/pytorch_utils.py @@ -57,7 +57,6 @@ def sync_ddp_time(time: float, device: torch.device) -> float: dist.all_reduce(time_tensor, op=dist.ReduceOp.MAX) return time_tensor.item() - def update_batch_norm_fn(module: spec.ParameterContainer, update_batch_norm: bool) -> None: bn_layers = ( @@ -67,10 +66,13 @@ def update_batch_norm_fn(module: spec.ParameterContainer, ) if isinstance(module, bn_layers): if not update_batch_norm: - module.eval() - module.momentum_backup = module.momentum + if not hasattr(module, 'momentum_backup'): + module.momentum_backup = module.momentum + # module.momentum can be float or torch.Tensor. - module.momentum = 0. * module.momentum_backup + if torch.is_tensor(module.momentum_backup): + module.momentum = torch.zeros_like(module.momentum_backup) + else: + module.momentum = 0.0 elif hasattr(module, 'momentum_backup'): - module.momentum = module.momentum_backup - module.track_running_stats = update_batch_norm + module.momentum = module.momentum_backup \ No newline at end of file diff --git a/algorithmic_efficiency/workloads/librispeech_conformer/librispeech_pytorch/models.py b/algorithmic_efficiency/workloads/librispeech_conformer/librispeech_pytorch/models.py index 502cb093e..cab73df4a 100644 --- a/algorithmic_efficiency/workloads/librispeech_conformer/librispeech_pytorch/models.py +++ b/algorithmic_efficiency/workloads/librispeech_conformer/librispeech_pytorch/models.py @@ -40,7 +40,7 @@ class ConformerConfig: time_masks_per_frame: float = 0.0 use_dynamic_time_mask_max_frames: bool = True input_dropout_rate: float = 0.1 - batch_norm_momentum: float = 0.999 + batch_norm_momentum: float = 1 - 0.999 batch_norm_epsilon: float = 0.001 use_specaug: bool = True attention_temperature: float = 1.0 @@ -369,10 +369,11 @@ def forward(self, inputs, input_paddings): mean = (masked_inp).sum(dim=(0, 1)) / count var = (torch.square(masked_inp - mean) * mask).sum(dim=(0, 1)) / count - self.running_mean = self.momentum * self.running_mean + ( - 1 - self.momentum) * mean.detach() - self.running_var = self.momentum * self.running_var + ( - 1 - self.momentum) * var.detach() + self.running_mean = (1 - self.momentum) * self.running_mean + ( + self.momentum) * mean.detach() + self.running_var = (1 - self.momentum) * self.running_var + ( + self.momentum) * var.detach() + else: mean = self.running_mean var = self.running_var diff --git a/algorithmic_efficiency/workloads/librispeech_deepspeech/librispeech_pytorch/models.py b/algorithmic_efficiency/workloads/librispeech_deepspeech/librispeech_pytorch/models.py index a5ee3fa0a..bdf556f1c 100644 --- a/algorithmic_efficiency/workloads/librispeech_deepspeech/librispeech_pytorch/models.py +++ b/algorithmic_efficiency/workloads/librispeech_deepspeech/librispeech_pytorch/models.py @@ -36,7 +36,7 @@ class DeepspeechConfig: time_mask_max_ratio: float = 0.05 time_masks_per_frame: float = 0.0 use_dynamic_time_mask_max_frames: bool = True - batch_norm_momentum: float = 0.999 + batch_norm_momentum: float = 1 - 0.999 batch_norm_epsilon: float = 0.001 # If None, defaults to 0.1. input_dropout_rate: Optional[float] = 0.1 @@ -264,10 +264,10 @@ def forward(self, inputs, input_paddings): sum_ = dist_nn.all_reduce(sum_) var = sum_ / count - self.running_mean = self.momentum * self.running_mean + ( - 1 - self.momentum) * mean.detach() - self.running_var = self.momentum * self.running_var + ( - 1 - self.momentum) * var.detach() + self.running_mean = (1 - self.momentum) * self.running_mean + ( + self.momentum) * mean.detach() + self.running_var = (1 - self.momentum) * self.running_var + ( + self.momentum) * var.detach() else: mean = self.running_mean var = self.running_var