forked from google/gemma.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgemma.cc
801 lines (698 loc) · 32.6 KB
/
gemma.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Lightweight C++ implementation of the gemma model.
// Compiles this file for multiple architectures via "foreach_target.h", to
// which we pass the filename via macro 'argument'.
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "gemma.cc" // NOLINT
#include "hwy/foreach_target.h" // IWYU pragma: keep
// Must come after foreach_target.h to avoid redefinition errors.
// copybara:import_next_line:gemma_cpp
#include "compression/compress-inl.h"
// copybara:import_next_line:gemma_cpp
#include "ops.h"
// copybara:import_next_line:gemma_cpp
#include "util/args.h" // Path
#include "hwy/contrib/matvec/matvec-inl.h"
#include "hwy/highway.h"
#include "hwy/profiler.h"
#include "hwy/timer.h"
// Non-SIMD includes and types. Note that HWY_ONCE is only true on the last
// compile pass, whereas we want this defined in the first.
#ifndef GEMMA_ONCE
#define GEMMA_ONCE
#include <stddef.h>
#include <stdio.h>
#include <algorithm>
#include <array>
#include <cmath>
#include <cstdlib>
#include <filesystem> // NOLINT
#include <iostream>
#include <memory>
#include <random>
#include <string>
#include <vector>
// copybara:import_next_line:gemma_cpp
#include "compression/compress.h"
// copybara:import_next_line:gemma_cpp
#include "configs.h"
// copybara:import_next_line:gemma_cpp
#include "gemma.h"
#include "hwy/aligned_allocator.h"
#include "hwy/base.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
// copybara:import_next_line:sentencepiece
#include "src/sentencepiece_processor.h"
namespace gcpp {
template <class TConfig>
struct Layer {
Layer() = default;
static constexpr size_t kHeads = TConfig::kHeads;
static constexpr size_t kModelDim = TConfig::kModelDim;
static constexpr size_t kQKVDim = TConfig::kQKVDim;
static constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim;
static constexpr size_t kAttVecEinsumWSize = kHeads * kQKVDim * kModelDim;
// 3x for (query, key, value)
static constexpr size_t kQKVEinsumWSize = 3 * kHeads * kQKVDim * kModelDim;
// 2x for (gelu gating vector, gated vector)
static constexpr size_t kGatingEinsumWSize = 2 * kFFHiddenDim * kModelDim;
std::array<float, kAttVecEinsumWSize> attn_vec_einsum_w;
std::array<float, kQKVEinsumWSize> qkv_einsum_w;
std::array<float, kGatingEinsumWSize> gating_einsum_w;
std::array<float, kModelDim * kFFHiddenDim> linear_w;
std::array<float, kModelDim> pre_attention_norm_scale;
std::array<float, kModelDim> pre_ffw_norm_scale;
};
template <class TConfig>
struct Weights {
Weights() = default;
hwy::AlignedUniquePtr<Layer<TConfig>[]> layers; // kLayers
std::array<float, TConfig::kVocabSize * TConfig::kModelDim>
embedder_input_embedding;
std::array<float, TConfig::kModelDim> final_norm_scale;
};
// Only called if cached loading fails.
template <typename TConfig>
hwy::AlignedUniquePtr<Weights<TConfig>> LoadWeights(const Path& checkpoint) {
PROFILER_ZONE("Startup.LoadWeights");
using TWeights = Weights<TConfig>;
hwy::AlignedUniquePtr<TWeights> weights = hwy::MakeUniqueAligned<TWeights>();
weights->layers =
hwy::MakeUniqueAlignedArray<Layer<TConfig>>(TConfig::kLayers);
FILE* fptr;
fptr = fopen(checkpoint.path.c_str(), "rb");
if (fptr == nullptr) {
HWY_ABORT("Failed to open model file %s - does it exist?",
checkpoint.path.c_str());
}
bool ok = true;
ok &= 1 == fread(&(weights->embedder_input_embedding),
sizeof(weights->embedder_input_embedding), 1, fptr);
ok &= 1 == fread(&(weights->final_norm_scale),
sizeof(weights->final_norm_scale), 1, fptr);
for (size_t layer = 0; layer < TConfig::kLayers; ++layer) {
Layer<TConfig>* layer_view = &weights->layers[layer];
ok &= 1 == fread(&layer_view->attn_vec_einsum_w,
sizeof(layer_view->attn_vec_einsum_w), 1, fptr);
ok &= 1 == fread(&layer_view->qkv_einsum_w,
sizeof(layer_view->qkv_einsum_w), 1, fptr);
ok &= 1 == fread(&layer_view->gating_einsum_w,
sizeof(layer_view->gating_einsum_w), 1, fptr);
ok &= 1 ==
fread(&layer_view->linear_w, sizeof(layer_view->linear_w), 1, fptr);
ok &= 1 == fread(&layer_view->pre_attention_norm_scale,
sizeof(layer_view->pre_attention_norm_scale), 1, fptr);
ok &= 1 == fread(&layer_view->pre_ffw_norm_scale,
sizeof(layer_view->pre_ffw_norm_scale), 1, fptr);
}
if (!ok) {
HWY_ABORT("Failed to read from %s - might be a directory, or too small?",
checkpoint.path.c_str());
}
HWY_ASSERT(0 == fclose(fptr));
return weights;
}
template <class TConfig>
struct CompressedLayer {
// No ctor/dtor, allocated via AllocateAligned.
using TLayer = gcpp::Layer<TConfig>;
static constexpr size_t kModelDim = TConfig::kModelDim;
static constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim;
// Compressed Parameters
// We don't yet have an RMSNorm that accepts all WeightT.
CompressedArray<hwy::bfloat16_t, kModelDim> c_pre_attention_norm_scale;
CompressedArray<hwy::bfloat16_t, kModelDim> c_pre_ffw_norm_scale;
CompressedArray<WeightT, TLayer::kGatingEinsumWSize> c_gating_einsum_w;
CompressedArray<WeightT, kModelDim * kFFHiddenDim> c_linear_w;
CompressedArray<WeightT, TLayer::kQKVEinsumWSize> c_qkv_einsum_w;
CompressedArray<WeightT, TLayer::kAttVecEinsumWSize> c_attn_vec_einsum_w;
};
// Array instead of single large allocation for parallel mem init. Split out of
// CompressedWeights so that only these pointers are initialized, not the
// CompressedArray.
template <class TConfig>
struct CompressedLayerPointers {
explicit CompressedLayerPointers(hwy::ThreadPool& pool) {
pool.Run(0, TConfig::kLayers, [this](uint64_t task, size_t /*thread*/) {
this->c_layers[task] = hwy::AllocateAligned<CompressedLayer<TConfig>>(1);
});
}
using CLayer = CompressedLayer<TConfig>;
std::array<hwy::AlignedFreeUniquePtr<CLayer[]>, TConfig::kLayers> c_layers;
};
template <class TConfig>
struct CompressedWeights {
// No ctor/dtor, allocated via AllocateAligned.
CompressedArray<EmbedderInputT, TConfig::kVocabSize * TConfig::kModelDim>
c_embedder_input_embedding;
CompressedArray<hwy::bfloat16_t, TConfig::kModelDim> c_final_norm_scale;
// Must be last so that the other arrays remain aligned.
CompressedLayerPointers<TConfig> c_layer_ptrs;
const CompressedLayer<TConfig>* CLayer(size_t layer) const {
return c_layer_ptrs.c_layers[layer].get();
}
CompressedLayer<TConfig>* CLayer(size_t layer) {
return c_layer_ptrs.c_layers[layer].get();
}
};
// Aligned.
template <class TConfig, size_t TBatchSize>
struct Activations {
static constexpr size_t kBatchSize = TBatchSize;
using LayerConfig = Layer<TConfig>;
static constexpr size_t kModelDim = TConfig::kModelDim;
static constexpr size_t kQKVDim = TConfig::kQKVDim;
static constexpr size_t kHeads = TConfig::kHeads;
static constexpr size_t kKVHeads = TConfig::kKVHeads;
static constexpr size_t kCachePosSize = TConfig::kLayers * kKVHeads * kQKVDim;
static constexpr size_t kCacheLayerSize = kKVHeads * kQKVDim;
std::array<float, kBatchSize * kModelDim> x; // input
std::array<float, kBatchSize * kModelDim> pre_att_rms_out;
std::array<float, kBatchSize * kHeads * kQKVDim> q; // query vector
std::array<float, kBatchSize * kHeads * TConfig::kSeqLen>
att; // attention vector
std::array<float, kBatchSize * kHeads * kQKVDim> att_out; // attention output
std::array<float, kHeads * kBatchSize * kModelDim>
att_post1; // attention output after linear transformation, per head
std::array<float, kBatchSize * kModelDim>
att_post2; // accumulation of attention outputs over heads
std::array<hwy::bfloat16_t, kBatchSize * kModelDim> bf_pre_ffw_rms_out;
std::array<float, kBatchSize * TConfig::kFFHiddenDim * 2> ffw_hidden;
// bf_ version can't be used until GeluMulToBF16 issue in FFW() is resolved.
// std::array<hwy::bfloat16_t, kBatchSize * 2 * TConfig::kFFHiddenDim>
// bf_ffw_hidden;
std::array<float, kBatchSize * kModelDim> ffw_out;
std::array<float, kBatchSize * TConfig::kVocabSize> logits;
};
// GemmaImpl is a template and thus cannot be exposed in gemma.h, hence we
// define an abstract base class.
struct GemmaInterface {
virtual ~GemmaInterface() = default;
virtual const sentencepiece::SentencePieceProcessor& Tokenizer() const = 0;
// TODO: group pool/callbacks into struct
virtual void Generate(const InferenceArgs& args,
const std::vector<int>& prompt, size_t start_pos,
hwy::ThreadPool& pool, hwy::ThreadPool& inner_pool,
const StreamFunc& stream_token,
const AcceptFunc& accept_token, std::mt19937& gen,
int verbosity) = 0;
};
template <class Config>
struct GemmaImpl : public GemmaInterface {
GemmaImpl(const LoaderArgs& args, hwy::ThreadPool& pool);
~GemmaImpl() {
using CWeights = CompressedWeights<Config>;
CWeights* c_weights = reinterpret_cast<CWeights*>(compressed_weights.get());
c_weights->c_layer_ptrs.~CompressedLayerPointers<Config>();
}
const sentencepiece::SentencePieceProcessor& Tokenizer() const {
return tokenizer;
}
void Generate(const InferenceArgs& args, const std::vector<int>& prompt,
size_t start_pos, hwy::ThreadPool& pool,
hwy::ThreadPool& inner_pool, const StreamFunc& stream_token,
const AcceptFunc& accept_token, std::mt19937&, int verbosity);
sentencepiece::SentencePieceProcessor tokenizer;
// CompressedWeights<Config>
hwy::AlignedFreeUniquePtr<uint8_t[]> compressed_weights;
hwy::AlignedUniquePtr<Activations<Config, kPrefillBatchSize>> prefill;
hwy::AlignedUniquePtr<Activations<Config, 1>> state;
KVCache kv_cache;
};
} // namespace gcpp
#endif // GEMMA_ONCE
// SIMD code, compiled once per target.
HWY_BEFORE_NAMESPACE();
namespace gcpp {
namespace HWY_NAMESPACE {
template <class TConfig, size_t kBatchSize>
HWY_NOINLINE void Attention(size_t batch_start, size_t batch_idx, size_t layer,
Activations<TConfig, kBatchSize>& activations,
const CompressedLayer<TConfig>* c_layer,
KVCache& kv_cache, hwy::ThreadPool& pool) {
PROFILER_ZONE("Gen.Attention");
const size_t pos = batch_start + batch_idx;
HWY_DASSERT(batch_idx < kBatchSize);
static constexpr size_t kQKVDim = gcpp::Activations<TConfig, 1>::kQKVDim;
static constexpr size_t kCachePosSize =
gcpp::Activations<TConfig, kBatchSize>::kCachePosSize;
static constexpr size_t kCacheLayerSize =
gcpp::Activations<TConfig, kBatchSize>::kCacheLayerSize;
static constexpr size_t kModelDim =
gcpp::Activations<TConfig, kBatchSize>::kModelDim;
static constexpr size_t kHeads = TConfig::kHeads;
const float kQueryScale = 1.0 / sqrtf(static_cast<float>(kQKVDim));
pool.Run(0, kHeads, [&](const uint64_t head, size_t /*thread*/) HWY_ATTR {
// linear projections to QKV
const size_t head_offset =
3 * kQKVDim * kModelDim; // 3x for QKV dimensions
const size_t q_offset = head * head_offset + 0 * kQKVDim * kModelDim;
const size_t k_offset = head * head_offset + 1 * kQKVDim * kModelDim;
const size_t v_offset = head * head_offset + 2 * kQKVDim * kModelDim;
float* HWY_RESTRICT q =
activations.q.data() + head * kQKVDim + batch_idx * kHeads * kQKVDim;
const size_t batch_offset = batch_idx * kModelDim;
MatVecLoop<kQKVDim, kModelDim>(
c_layer->c_qkv_einsum_w, q_offset,
activations.pre_att_rms_out.data() + batch_offset, q);
const size_t kv_offset =
pos * kCachePosSize + layer * kCacheLayerSize + head * kQKVDim;
TwoOfsMatVecLoop<kQKVDim, kModelDim>(
c_layer->c_qkv_einsum_w, k_offset, v_offset,
activations.pre_att_rms_out.data() + batch_offset,
kv_cache.key_cache.get() + kv_offset,
kv_cache.value_cache.get() + kv_offset);
// Calculate scores
float* HWY_RESTRICT head_att = activations.att.data() +
head * TConfig::kSeqLen +
batch_idx * kHeads * kQKVDim;
Rope(q, kQKVDim, pos);
Rope(kv_cache.key_cache.get() + kv_offset, kQKVDim, pos);
MulByConst(kQueryScale, q, kQKVDim);
// Compute Q dot K scores
for (size_t pos2 = 0; pos2 <= pos; ++pos2) {
const size_t cache_offset =
pos2 * kCachePosSize + layer * kCacheLayerSize + head * kQKVDim;
const float* HWY_RESTRICT k2 = kv_cache.key_cache.get() + cache_offset;
const float score = Dot(q, k2, kQKVDim);
head_att[pos2] = score;
}
Softmax(head_att, pos + 1);
// Weighted summation
float* HWY_RESTRICT att_out = activations.att_out.data() + head * kQKVDim +
batch_idx * kHeads * kQKVDim;
hwy::ZeroBytes(att_out, kQKVDim * sizeof(*att_out));
for (size_t pos2 = 0; pos2 <= pos; ++pos2) {
const size_t cache_offset =
pos2 * kCachePosSize + layer * kCacheLayerSize + head * kQKVDim;
float* HWY_RESTRICT v2 = kv_cache.value_cache.get() + cache_offset;
MulByConstAndAdd(head_att[pos2], v2, att_out, kQKVDim);
}
// linear projection from kQKVDim back to kModelDim, sum projections
// across heads
float* HWY_RESTRICT head_out =
head == 0
? activations.att_post2.data() + batch_idx * kModelDim
: activations.att_post1.data() + head * kBatchSize * kModelDim;
MatVecLoop<kModelDim, kQKVDim>(c_layer->c_attn_vec_einsum_w,
head * kModelDim * kQKVDim, att_out,
head_out);
});
// accumulate output across all heads into att_post2. head 0 already wrote
// directly to att_post2.
for (size_t head = 1; head < kHeads; ++head) {
AddFrom(activations.att_post1.data() + head * kBatchSize * kModelDim,
activations.att_post2.data() + batch_idx * kModelDim, kModelDim);
}
}
template <typename TConfig, size_t kBatchSize>
HWY_NOINLINE void FFW(Activations<TConfig, kBatchSize>& activations,
size_t batch_idx, const CompressedLayer<TConfig>* c_layer,
hwy::ThreadPool& pool) {
HWY_DASSERT(batch_idx < kBatchSize);
static constexpr size_t kModelDim = TConfig::kModelDim;
static constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim;
const size_t hidden_offset = batch_idx * kFFHiddenDim * 2;
{
PROFILER_ZONE("Gen.FFW.GatedGELU");
const hwy::bfloat16_t* HWY_RESTRICT vec =
activations.bf_pre_ffw_rms_out.data() + batch_idx * kModelDim;
float* HWY_RESTRICT out = activations.ffw_hidden.data() + hidden_offset;
float* HWY_RESTRICT out_mul = out + kFFHiddenDim;
// Same matrix, first and second half of rows. Could fuse into one MatVec,
// but separating them could help on NUMA e.g. multiple sockets.
MatVec<kFFHiddenDim, kModelDim>(c_layer->c_gating_einsum_w,
kFFHiddenDim * kModelDim, vec, out_mul,
pool);
// Gate, will go through the nonlinearity.
MatVec<kFFHiddenDim, kModelDim>(c_layer->c_gating_einsum_w, 0, vec, out,
pool);
namespace hn = hwy::HWY_NAMESPACE;
using DF = hn::ScalableTag<float>;
using VF = hn::Vec<DF>;
hn::Transform1(DF(), out, kFFHiddenDim, out_mul,
[](DF df, VF v, VF mul)
HWY_ATTR { return hn::Mul(mul, Gelu(df, v)); });
}
PROFILER_ZONE("Gen.FFW\\GatedGELU");
MatVec<kModelDim, kFFHiddenDim>(
c_layer->c_linear_w, 0, activations.ffw_hidden.data() + hidden_offset,
activations.ffw_out.data() + batch_idx * kModelDim, pool);
}
template <typename TConfig, size_t kBatchSize>
HWY_NOINLINE void Prefill(const int* tokens, size_t num_tokens, size_t pos,
const CompressedWeights<TConfig>& c_weights,
Activations<TConfig, kBatchSize>& activations,
KVCache& kv_cache, hwy::ThreadPool& pool,
hwy::ThreadPool& inner_pool) {
PROFILER_ZONE("Gen.Prefill\\Att\\FFW");
static constexpr size_t kModelDim = TConfig::kModelDim;
static const float kEmbScaling = sqrtf(static_cast<float>(kModelDim));
pool.Run(
0, num_tokens, [&](const uint64_t token_idx, size_t /*thread*/) HWY_ATTR {
const int token = tokens[token_idx];
Decompress(c_weights.c_embedder_input_embedding, token * kModelDim,
activations.x.data() + token_idx * kModelDim, kModelDim);
MulByConst(kEmbScaling, activations.x.data() + token_idx * kModelDim,
kModelDim);
});
for (size_t layer = 0; layer < TConfig::kLayers; ++layer) {
const CompressedLayer<TConfig>* c_layer = c_weights.CLayer(layer);
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
RMSNorm(activations.x.data() + token_idx * kModelDim,
c_layer->c_pre_attention_norm_scale.data(),
activations.pre_att_rms_out.data() + token_idx * kModelDim,
kModelDim);
Attention<TConfig, kBatchSize>(pos, token_idx, layer, activations,
c_layer, kv_cache, pool);
}
// TODO: sink the loop into these functions, i.e. make them matmuls.
pool.Run(
0, num_tokens,
[&](const uint64_t token_idx, size_t thread_id) HWY_ATTR {
AddFrom(activations.att_post2.data() + token_idx * kModelDim,
activations.x.data() + token_idx * kModelDim, kModelDim);
RMSNorm(activations.x.data() + token_idx * kModelDim,
c_layer->c_pre_ffw_norm_scale.data(),
activations.bf_pre_ffw_rms_out.data() + token_idx * kModelDim,
kModelDim);
FFW<TConfig, kBatchSize>(activations, token_idx, c_layer, inner_pool);
AddFrom(activations.ffw_out.data() + token_idx * kModelDim,
activations.x.data() + token_idx * kModelDim, kModelDim);
});
} // foreach layer
pool.Run(
0, num_tokens, [&](const uint64_t token_idx, size_t /*thread*/) HWY_ATTR {
RMSNormInplace(c_weights.c_final_norm_scale.data(),
activations.x.data() + token_idx * kModelDim, kModelDim);
});
}
// n = 1 specialization
template <class TConfig>
void Transformer(int token, size_t pos,
const CompressedWeights<TConfig>& c_weights,
Activations<TConfig, 1>& activations, KVCache& kv_cache,
hwy::ThreadPool& pool, hwy::ThreadPool& inner_pool) {
static constexpr size_t kLayers = TConfig::kLayers;
static constexpr size_t kModelDim = TConfig::kModelDim;
static const float kEmbScaling = sqrtf(static_cast<float>(kModelDim));
Decompress(c_weights.c_embedder_input_embedding, token * kModelDim,
activations.x.data(), kModelDim);
MulByConst(kEmbScaling, activations.x.data(), kModelDim);
for (size_t layer = 0; layer < kLayers; ++layer) {
const CompressedLayer<TConfig>* c_layer = c_weights.CLayer(layer);
RMSNorm(activations.x.data(), c_layer->c_pre_attention_norm_scale.data(),
activations.pre_att_rms_out.data(), kModelDim);
Attention<TConfig, 1>(pos, 0, layer, activations, c_layer, kv_cache, pool);
AddFrom(activations.att_post2.data(), activations.x.data(), kModelDim);
RMSNorm(activations.x.data(), c_layer->c_pre_ffw_norm_scale.data(),
activations.bf_pre_ffw_rms_out.data(), kModelDim);
FFW<TConfig, 1>(activations, /* batch_idx = */ 0, c_layer, pool);
AddFrom(activations.ffw_out.data(), activations.x.data(), kModelDim);
}
RMSNormInplace(c_weights.c_final_norm_scale.data(), activations.x.data(),
kModelDim);
}
template <class TConfig>
void GenerateImpl(GemmaImpl<TConfig>& gemma, const InferenceArgs& args,
const std::vector<int>& prompt, size_t pos,
hwy::ThreadPool& pool, hwy::ThreadPool& inner_pool,
const StreamFunc& stream_token,
const AcceptFunc& accept_token, std::mt19937& gen,
int verbosity) {
static constexpr size_t kModelDim = TConfig::kModelDim;
static constexpr size_t kVocabSize = TConfig::kVocabSize;
static constexpr size_t kTopK = TConfig::kTopK;
Activations<TConfig, 1>& activations = *gemma.state.get();
Activations<TConfig, kPrefillBatchSize>& prefill_activations =
*gemma.prefill.get();
const CompressedWeights<TConfig>& c_weights =
*reinterpret_cast<CompressedWeights<TConfig>*>(
gemma.compressed_weights.get());
KVCache& kv_cache = gemma.kv_cache;
int token;
// pos indexes the KV cache. In the first turn of a chat, pos = 0.
//
// After the first turn, pos gets passed in with > 0 corresponding to the
// current token position in the KV cache.
//
// pos_offset keeps track of the relative position within the turn, starting
// at 0 each turn. During prefill, pos_offset corresponds to the index into
// the prompt vector.
//
// In single-turn (non-chat) usage, pos and pos_offset start at 0 and are
// always equal.
size_t pos_offset = 0; // offset relative to pos
double prefill_start = hwy::platform::Now();
// Prefill stops before prompt.size() - 1 since the last prompt token is the
// first input token for generation.
while (pos_offset < prompt.size() - 1) {
const size_t end_offset =
std::min(kPrefillBatchSize, prompt.size() - 1 - pos_offset);
HWY_DASSERT(end_offset < prompt.size());
const int* batch_tokens = prompt.data() + pos_offset;
Prefill<TConfig, kPrefillBatchSize>(batch_tokens, end_offset, pos,
c_weights, prefill_activations,
kv_cache, pool, inner_pool);
for (size_t idx = 0; idx < end_offset; ++idx) {
stream_token(batch_tokens[idx], 0.0);
}
pos += end_offset;
pos_offset += end_offset;
}
if (verbosity >= 2) {
// in the future this output should not occur in GenerateImpl but instead
// should be available as observable state for frontend code to handle I/O.
double prefill_end = hwy::platform::Now();
const double prefill_tok_sec = pos_offset / (prefill_end - prefill_start);
std::cout << "\n[ Prefill tokens / sec = " << prefill_tok_sec << " ]\n";
}
double gen_start = hwy::platform::Now();
HWY_DASSERT(pos_offset == prompt.size() - 1);
if (verbosity >= 2) {
// Provide usage warnings if max_new_tokens is out of range.
if (args.max_generated_tokens > args.max_tokens) {
std::cout << "Warning: max_new_tokens should be <= max_tokens"
<< std::endl;
} else if ((prompt.size() + args.max_generated_tokens) > args.max_tokens) {
std::cout << "Warning: Prompt size + max_new_tokens exceeds max_tokens."
<< std::endl;
}
}
auto pos_gen_start = pos_offset;
token = prompt.at(pos_offset);
size_t generate_pos = 0;
for (; pos < args.max_tokens && generate_pos < args.max_generated_tokens;
++pos, ++pos_offset, ++generate_pos) {
Transformer(token, pos, c_weights, activations, kv_cache, pool, inner_pool);
float* final_activation = activations.x.data();
if (pos_offset >= prompt.size()) {
PROFILER_ZONE("Gen.Embedding");
// Generation phase
MatVec<kVocabSize, kModelDim>(c_weights.c_embedder_input_embedding, 0,
final_activation, activations.logits.data(),
pool);
// Barrier: must have all logits so we can subtract max.
Softmax(activations.logits.data(), kVocabSize);
token = SampleTopK<kTopK>(activations.logits.data(), kVocabSize, gen,
args.temperature, accept_token);
}
if (!stream_token(token, activations.logits[token])) {
token = EOS_ID;
}
if (token == EOS_ID) {
if (verbosity >= 2) {
double gen_end = hwy::platform::Now();
const double gen_tok_sec =
(pos_offset - pos_gen_start) / (gen_end - gen_start);
std::cout << "\n[ Generation tokens / sec = " << gen_tok_sec << " ]\n";
}
break;
}
}
}
void Generate2B(GemmaImpl<ConfigGemma2B>& gemma, const InferenceArgs& args,
const std::vector<int>& prompt, size_t start_pos,
hwy::ThreadPool& pool, hwy::ThreadPool& inner_pool,
const StreamFunc& stream_token, const AcceptFunc& accept_token,
std::mt19937& gen, int verbosity) {
GenerateImpl(gemma, args, prompt, start_pos, pool, inner_pool, stream_token,
accept_token, gen, verbosity);
}
void Generate7B(GemmaImpl<ConfigGemma7B>& gemma, const InferenceArgs& args,
const std::vector<int>& prompt, size_t start_pos,
hwy::ThreadPool& pool, hwy::ThreadPool& inner_pool,
const StreamFunc& stream_token, const AcceptFunc& accept_token,
std::mt19937& gen, int verbosity) {
GenerateImpl(gemma, args, prompt, start_pos, pool, inner_pool, stream_token,
accept_token, gen, verbosity);
}
// Calls func(name, float*, CompressedArray&) for each tensor. float* is null
// if weights = null, which happens during the first call where we attempt to
// load from cache.
//
// This avoids repeating the list of tensors between loading and compressing.
template <class TConfig, class Func>
void ForEachTensor(const Weights<TConfig>* weights,
CompressedWeights<TConfig>& c_weights, Func& func) {
func("c_embedding",
weights ? weights->embedder_input_embedding.data() : nullptr,
c_weights.c_embedder_input_embedding);
func("c_final_norm", weights ? weights->final_norm_scale.data() : nullptr,
c_weights.c_final_norm_scale);
char name[16];
for (size_t layer_idx = 0; layer_idx < TConfig::kLayers; ++layer_idx) {
Layer<TConfig>* layer = weights ? &weights->layers[layer_idx] : nullptr;
CompressedLayer<TConfig>* c_layer = c_weights.CLayer(layer_idx);
snprintf(name, sizeof(name), "pre_ff_ns_%lu", layer_idx);
func(name, layer ? layer->pre_ffw_norm_scale.data() : nullptr,
c_layer->c_pre_ffw_norm_scale);
snprintf(name, sizeof(name), "gating_ein_%lu", layer_idx);
func(name, layer ? layer->gating_einsum_w.data() : nullptr,
c_layer->c_gating_einsum_w);
snprintf(name, sizeof(name), "linear_w_%lu", layer_idx);
func(name, layer ? layer->linear_w.data() : nullptr, c_layer->c_linear_w);
snprintf(name, sizeof(name), "qkv_ein_%lu", layer_idx);
func(name, layer ? layer->qkv_einsum_w.data() : nullptr,
c_layer->c_qkv_einsum_w);
snprintf(name, sizeof(name), "att_ein_%lu", layer_idx);
func(name, layer ? layer->attn_vec_einsum_w.data() : nullptr,
c_layer->c_attn_vec_einsum_w);
snprintf(name, sizeof(name), "pre_att_ns_%lu", layer_idx);
func(name, layer ? layer->pre_attention_norm_scale.data() : nullptr,
c_layer->c_pre_attention_norm_scale);
}
}
template <class TConfig>
hwy::AlignedFreeUniquePtr<uint8_t[]> GetCompressedWeights(
const Path& model, const Path& cache, hwy::ThreadPool& pool) {
PROFILER_ZONE("Startup.LoadCache");
if (!std::filesystem::exists(model.path) &&
!std::filesystem::exists(cache.path)) {
HWY_ABORT(
"Either the model weights (--weights) or cached compressed weights "
"(--compressed_weights) must exist.");
}
// Allocate compressed weights.
using CWeights = CompressedWeights<TConfig>;
hwy::AlignedFreeUniquePtr<uint8_t[]> c_weights_u8 =
hwy::AllocateAligned<uint8_t>(sizeof(CWeights));
CWeights* c_weights = reinterpret_cast<CWeights*>(c_weights_u8.get());
new (&c_weights->c_layer_ptrs) CompressedLayerPointers<TConfig>(pool);
// First attempt to load them from cache, without requiring weights.
CacheLoader loader(cache.path.c_str());
ForEachTensor<TConfig>(nullptr, *c_weights, loader);
if (loader.ReadAll(pool)) return c_weights_u8;
// Get weights, compress, and store in cache.
hwy::AlignedUniquePtr<Weights<TConfig>> weights = LoadWeights<TConfig>(model);
Compressor compressor(pool);
ForEachTensor<TConfig>(weights.get(), *c_weights, compressor);
compressor.WriteAll(pool, cache.path.c_str());
return c_weights_u8;
}
// Type-erased because this function is called via a function pointer.
hwy::AlignedFreeUniquePtr<uint8_t[]> GetCompressedWeightsT(
const LoaderArgs& args, hwy::ThreadPool& pool) {
switch (args.ModelType()) {
case Model::GEMMA_2B:
return GetCompressedWeights<ConfigGemma2B>(args.model, args.cache, pool);
case Model::GEMMA_7B:
return GetCompressedWeights<ConfigGemma7B>(args.model, args.cache, pool);
default:
HWY_ABORT("Model type %d unknown.", static_cast<int>(args.ModelType()));
}
}
} // namespace HWY_NAMESPACE
} // namespace gcpp
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace gcpp {
HWY_EXPORT(GetCompressedWeightsT);
HWY_EXPORT(Generate2B);
HWY_EXPORT(Generate7B);
KVCache CreateKVCache(size_t size_cache_pos, size_t kSeqLen) {
KVCache kv_cache = {};
kv_cache.key_cache = hwy::AllocateAligned<float>(kSeqLen * size_cache_pos);
kv_cache.value_cache = hwy::AllocateAligned<float>(kSeqLen * size_cache_pos);
return kv_cache;
}
template <class Config>
GemmaImpl<Config>::GemmaImpl(const LoaderArgs& args, hwy::ThreadPool& pool)
: compressed_weights(
HWY_DYNAMIC_DISPATCH(GetCompressedWeightsT)(args, pool)),
prefill(hwy::MakeUniqueAligned<Activations<Config, kPrefillBatchSize>>()),
state(hwy::MakeUniqueAligned<Activations<Config, 1>>()),
kv_cache(
CreateKVCache(Config::kLayers * Config::kKVHeads * Config::kQKVDim,
Config::kSeqLen)) {
PROFILER_ZONE("Startup.tokenizer");
HWY_ASSERT(tokenizer.Load(args.tokenizer.path).ok());
}
template <>
void GemmaImpl<ConfigGemma2B>::Generate(const InferenceArgs& args,
const std::vector<int>& prompt,
size_t start_pos, hwy::ThreadPool& pool,
hwy::ThreadPool& inner_pool,
const StreamFunc& stream_token,
const AcceptFunc& accept_token,
std::mt19937& gen, int verbosity) {
HWY_DYNAMIC_DISPATCH(Generate2B)
(*this, args, prompt, start_pos, pool, inner_pool, stream_token, accept_token,
gen, verbosity);
}
template <>
void GemmaImpl<ConfigGemma7B>::Generate(const InferenceArgs& args,
const std::vector<int>& prompt,
size_t start_pos, hwy::ThreadPool& pool,
hwy::ThreadPool& inner_pool,
const StreamFunc& stream_token,
const AcceptFunc& accept_token,
std::mt19937& gen, int verbosity) {
HWY_DYNAMIC_DISPATCH(Generate7B)
(*this, args, prompt, start_pos, pool, inner_pool, stream_token, accept_token,
gen, verbosity);
}
Gemma::Gemma(const LoaderArgs& args, hwy::ThreadPool& pool) {
const Model model_type = args.ModelType();
model_training = args.ModelTraining();
switch (model_type) {
case Model::GEMMA_2B:
impl_.reset(new GemmaImpl<ConfigGemma2B>(args, pool));
break;
case Model::GEMMA_7B:
impl_.reset(new GemmaImpl<ConfigGemma7B>(args, pool));
break;
default:
HWY_ABORT("Model type %d unknown.", static_cast<int>(model_type));
}
}
Gemma::~Gemma() = default; // after GemmaInterface is defined
const sentencepiece::SentencePieceProcessor& Gemma::Tokenizer() const {
return impl_->Tokenizer();
}
void GenerateGemma(Gemma& gemma, const InferenceArgs& args,
const std::vector<int>& prompt, size_t start_pos,
hwy::ThreadPool& pool, hwy::ThreadPool& inner_pool,
const StreamFunc& stream_token,
const AcceptFunc& accept_token, std::mt19937& gen,
int verbosity) {
pool.SetWaitMode(hwy::PoolWaitMode::kSpin);
gemma.impl_->Generate(args, prompt, start_pos, pool, inner_pool, stream_token,
accept_token, gen, verbosity);
pool.SetWaitMode(hwy::PoolWaitMode::kBlock);
}
} // namespace gcpp
#endif // HWY_ONCE