Skip to content

Latest commit

 

History

History
90 lines (69 loc) · 2.7 KB

README.md

File metadata and controls

90 lines (69 loc) · 2.7 KB

SCEdit-pytorch

Open In Colab

This is an implementation of SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing by mkshing.

result

  • Beyond the paper, this implementation can use SDXL as the pre-trained model.
  • Enabled to set the weight scale by scale.
  • As the paper says, the architecture of SCEdit is very flexible. SCTunerLinearLayer I implemented seems too small compared to what the paper mentioned. So, please let me know if you find better ones.

image

Installation

git clone https://github.com/mkshing/scedit-pytorch.git
cd scedit-pytorch
pip install -r requirements.txt

SC-Tuner

Training

The training script is pretty much same as the lora's script from diffuers.

MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
INSTANCE_DIR="path-to-dataset"
OUTPUT_DIR="scedit-trained-xl"

accelerate launch train_dreambooth_scedit_sdxl.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --output_dir=$OUTPUT_DIR \
  --mixed_precision="fp16" \
  --instance_prompt="a photo of sbu dog" \
  --resolution=1024 \
  --train_batch_size=1 \
  --gradient_accumulation_steps=8 \
  --learning_rate=5e-5 \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --max_train_steps=1000 \
  --checkpointing_steps=200 \
  --validation_prompt="A photo of sbu dog in a bucket" \
  --validation_epochs=100 \
  --use_8bit_adam \
  --report_to="wandb" \
  --seed="0" \
  --push_to_hub

Inference

Python example:

from diffusers import DiffusionPipeline
import torch
from scedit_pytorch import UNet2DConditionModel, load_scedit_into_unet


base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
scedit_model_id = "path-to-scedit"

# load unet with sctuner
unet = UNet2DConditionModel.from_pretrained(base_model_id, subfolder="unet")
unet.set_sctuner(scale=1.0)
unet = load_scedit_into_unet(scedit_model_id, unet)
# load pipeline
pipe = DiffusionPipeline.from_pretrained(base_model_id, unet=unet)
pipe = pipe.to(device="cuda", dtype=torch.float16)

Gradio Demo:

MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
SCEDIT_NAME="mkshing/scedit-trained-xl"

python scripts/gradio.py \
  --pretrained_model_name_or_path $MODEL_NAME \
  --scedit_name_or_path $SCEDIT_NAME

TODO

  • SC-Tuner
  • CSC-Tuner