forked from AER-RC/RRTM_SW
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rrtm_sw_instructions
859 lines (496 loc) · 31.8 KB
/
rrtm_sw_instructions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
C
C --------------------------------------------------------------------------
C | |
C | Copyright 2002, 2003, Atmospheric & Environmental Research, Inc. (AER). |
C | This software may be used, copied, or redistributed as long as it is |
C | not sold and this copyright notice is reproduced on each copy made. |
C | This model is provided as is without any express or implied warranties. |
C | (http://www.rtweb.aer.com/) |
C | |
C --------------------------------------------------------------------------
USER INSTRUCTIONS FOR RRTM_SW
April 2004
Contents:
1. Instructions for INPUT_RRTM
2. Instructions for IN_CLD_RRTM
3. Instructions for IN_AER_RRTM
INPUT_RRTM Instructions
-------------------------
RECORD 1.1
CXID: 80 characters of user identification (80A1)
CXID(1) is the flag which determines program initialization and termination.
The actual input data stream for RRTM commences with the record
containing a '$' in CXID(1). Any records that are read prior to a
record containing a '$' in CXID(1) are ignored.
RECORD 1.2
IAER, IATM, ISCAT, ISTRM, IOUT, ICLD, IDELM, ICOS
20, 50, 83, 85, 88-90, 95, 99, 100
18x, I2, 29X, I1, 32X, I1, 1X, I1, 2X, I3, 4X, I1, 3X, I1, I1
IAER (0,10) flag for aerosols
= 0 no layers contain aerosols
= 10 one or more layers contain aerosols
(requires the presence of file IN_AER_RRTM)
IATM (0,1) flag for RRTATM 1 = yes
ISCAT (0,1) switch for DISORT or simple two-stream scattering
= 0 DISORT (default)
= 1 two-stream (currently not implemented)
ISTRM flag for number of streams used in DISORT (ISCAT must be equal to 0)
= 0 - 4 streams (default)
= 1 - 8 streams
= 2 - 16 streams
IOUT = -1 if no output is to be printed out.
= 0 if the only output is for 820-50000 cm-1.
= n (n = 16-29) if the only output is from band n.
For the wavenumbers for each band, see Table I.
= 98 if output is generated for 15 spectral intervals, one
for the full shortwave spectrum (820-50000 cm-1), and one
for each of the 14 bands.
ICLD (0,1) flag for clouds
= 0 no cloudy layers in atmosphere
= 1 one or more cloudy layers present in atmosphere
(requires the presence of file IN_CLD_RRTM)
Measurement comparison flags:
IDELM (0,1) flag for outputting downwelling fluxes computed using the delta-M scaling approximation
= 0 output "true" direct and diffuse downwelling fluxes
= 1 output direct and diffuse downwelling fluxes computed with delta-M approximation
(Note: The delta-M approximation is always used internally in RRTM_SW to compute the total
downwelling flux at each level. What the IDELM flag determines is whether the components
of the downwelling flux, the direct and diffuse fluxes, that are output are the actual direct
and diffuse fluxes (IDELM = 0) or are those computed using the delta-M approximation (IDELM = 1).
If the computed direct and diffuse fluxes are being compared with corresponding measured fluxes
and a nontrivial amount of forward scattered radiation is likely to have been included in the
measurement of the direct flux, then IDELM should be set to 1.)
ICOS = 0 there is no need to account for instrumental cosine response
= 1 to account for instrumental cosine response in the computation of the direct and diffuse fluxes
= 2 to account for instrumental cosine response in the computation of the diffuse fluxes only
(Note: ICOS = 1 and ICOS = 2 requires the presence of the file COSINE_RESPONSE, which should
consist of lines containing pairs of numbers (ANG, COSFAC), where COSFAC is the instrumental cosine
response at the angle ANG.)
RECORD 1.2.1
JULDAT, SZA, ISOLVAR, (SOLVAR(IB),IB=16,29)
13-15, 19-25, 30, 31 - 121
12X, I3, 3X, F7.4, 4X, I1, 14F5.3
JULDAT Julian day associated with calculation (1-365/366 starting January 1).
Used to calculate Earth distance from sun. A value of 0 (default) indicates no scaling
of solar source function using earth-sun distance.
SZA Solar zenith angle in degrees (0 deg is overhead).
ISOLVAR Solar variability option
= 0 each band uses standard solar source function, corresponding
to present day conditions.
= 1 scale solar source function, each band will have the same
scale factor applied, (equal to SOLVAR(16))
= 2 scale solar source function, each band has different scale
factors (for band IB, equal to SOLVAR(IB))
SOLVAR the solar source function scale factor for each band. If
ISOLVAR = 1, only the first value of SOLVAR (SOLVAR(16)) is
considered. If ISOLVAR = 2, values must be provided for all bands.
RECORD 1.4
IEMIS, IREFLECT, (SEMISS(IB),IB=16,29)
12, 15, 16-85
11X, I1, 2X, I1, 14F5.3
(Note: surface reflectance = 1 - surface emissivity)
IEMIS = 0 each band has surface emissivity equal to 1.0
= 1 each band has the same surface emissivity (equal to SEMISS(16))
= 2 each band has different surface emissivity (for band IB, equal to SEMISS(IB))
IREFLECT = 0 for Lambertian reflection at surface, i.e. reflected radiance
is equal at all angles
= 1 for specular reflection at surface, i.e. reflected radiance at angle
is equal to downward surface radiance at same angle multiplied by
the reflectance. THIS OPTION CURRENTLY NOT IMPLEMENTED.
SEMISS the surface emissivity for each band (see Table I). All values must be
greater than 0 and less than or equal to 1. If IEMIS = 1, only
the first value of SEMISS (SEMISS(16)) is considered. If IEMIS = 2
and no surface emissivity value is given for SEMISS(IB), a value of 1.0
is used for band IB.
*****************************************************************************
****** these records applicable only if RRTATM not selected (IATM=0) ******
LAYER INPUT (MOLECULES ONLY)
RECORD 2.1
IFORM, NLAYRS, NMOL
2 3-5, 6-10
1X,I1 I3, I5
IFORM (0,1) column amount format flag
= 0 read PAVE, WKL(M,L), WBROADL(L) in F10.4, E10.3, E10.3 formats (default)
= 1 read PAVE, WKL(M,L), WBROADL(L) in E15.7 format
NLAYRS number of layers (maximum of 200)
NMOL value of highest molecule number used (default = 7; maximum of 35)
See Table II for molecule numbers.
RECORD 2.1.1
PAVE, TAVE, PZ(L-1), TZ(L-1), PZ(L), TZ(L)
1-10, 11-20, 44-51, 52-58, 66-73, 74-80
F10.4, F10.4, 23X, F8.3, F7.2, 7X, F8.3, F7.2
PAVE average pressure of layer (millibars) (**If IFORM=1, then PAVE in E15.7 format**)
TAVE average temperature of layer (K)
PZ(L-1) pressure at bottom of layer L
TZ(L-1) temperature at bottom of layer L - used by RRTM for Planck Function Calculation
** NOTE ** PZ(L-1) and TZ(L-1) are only required for the first layer. RRTM assumes that
these quantites are equal to the top of the previous layer for L > 1.
PZ(L) pressure at top of layer L
TZ(L) temperature at top of layer L - used by RRTM for Planck Function Calculation
RECORD 2.1.2
(WKL(M,L), M=1, 7), WBROADL(L)
(8E10.3)
WKL(M,L) column densities or mixing ratios for 7 molecular species (molecules/cm**2)
WBROADL(L) column density for broadening gases (molecules/cm**2)
**NOTE** If IFORM=1, then WKL(M,L) and WBROADL(L) are in 8E15.7 format
RECORD 2.1.3 only if (NMOL .GT . 7) # records depends on NMOL
(WKL(M,L), M=8, NMOL)
(8E10.3)
NMOL is set from LINFIL (TAPE3)
(NMOL limited to 35 in RRTM) **NOTE: If IFORM=1 then WKL(M,L) in 8E15.7 format**
REPEAT RECORDS 2.1.1 through 2.1.3 for the remaining layers (up to NLAYRS)
*****************************************************************************
******** these records applicable if RRTATM selected (IATM=1) ********
RECORD 3.1
MODEL, IBMAX, NOPRNT, NMOL, IPUNCH, MUNITS, RE, CO2MX, REF_LAT
5, 15, 25, 30, 35, 39-40, 41-50, 71-80, 81-90
I5, 5X, I5, 5X, I5, I5, I5, 3X, I2, F10.3, 20X, F10.3, F10.3
MODEL selects atmospheric profile
= 0 user supplied atmospheric profile
= 1 tropical model
= 2 midlatitude summer model
= 3 midlatitude winter model
= 4 subarctic summer model
= 5 subarctic winter model
= 6 U.S. standard 1976
IBMAX selects layering for RRTM
= 0 RRTM layers are generated internally (default)
> 0 IBMAX is the number of layer boundaries read in on Record 3.3B which are
used to define the layers used in RRTM calculation
NOPRNT = 0 full printout
= 1 selects short printout
NMOL number of molecular species (default = 7; maximum value is 35)
IPUNCH = 0 layer data not written (default)
= 1 layer data written to unit IPU (TAPE7)
MUNITS = 0 write molecular column amounts to TAPE7 (if IPUNCH = 1, default)
= 1 write molecular mixing ratios to TAPE7 (if IPUNCH = 1)
RE radius of earth (km)
defaults for RE=0:
a) MODEL 0,2,3,6 RE = 6371.23 km
b) 1 RE = 6378.39 km
c) 4,5 RE = 6356.91 km
CO2MX mixing ratio for CO2 (ppm). Default is 330 ppm.
REF_LAT latitude of location of calculation (degrees)
defaults for REF_LAT = 0:
a) MODEL 0,2,3,6 REF_LAT = 45.0 degrees
b) MODEL 1 REF_LAT = 15.0
c) MODEL 4,5 REF_LAT = 60.0
-----------------------------------------------------------------------------
RECORD 3.2
HBOUND, HTOA
1-10, 11-20
F10.3, F10.3
HBOUND altitude of the surface (km)
HTOA altitude of the top of the atmosphere (km)
RECORD 3.3 options
RECORD 3.3A For IBMAX = 0 (from RECORD 3.1)
AVTRAT, TDIFF1, TDIFF2, ALTD1, ALTD2
1-10, 11-20, 21-30, 31-40, 41-50
F10.3, F10.3, F10.3, F10.3, F10.3
AVTRAT maximum Voigt width ratio across a layer
(if zero, default = 1.5)
TDIFF1 maximum layer temperature difference at
ALTD1 (if zero, default = 5 K)
TDIFF2 maximum layer temperature difference at
ALTD2 (if zero, default = 8 K)
ALTD1 altitude of TDIFF1 (if zero, default = 0 Km)
ALTD2 altitude of TDIFF2 (if zero, default = 100 Km)
RECORD 3.3B For IBMAX > 0 (from RECORD 3.1)
ZBND(I), I=1, IBMAX altitudes of RRTM layer boundaries
(8F10.3)
If IBMAX < 0
PBND(I), I=1, ABS(IBMAX) pressures of LBLRTM layer boundaries
(8F10.3)
--------------------------------------------------------------------------------
-----------------------------------------------------------------------------
User Defined Atmospheric Profile
-------------------------------- (MODEL = 0) --------------------------------
RECORD 3.4
IMMAX, HMOD
5, 6-29
I5, 3A8
IMMAX number of atmospheric profile boundaries
If IMMAX is set to a negative value, the level boundaries are
specified in PRESSURE (mbars).
HMOD 24 character description of profile
RECORD 3.5
ZM, PM, TM, JCHARP, JCHART, (JCHAR(K),K =1,28)
1-10, 11-20, 21-30, 36, 37, 41 through 68
E10.3, E10.3, E10.3, 5x, A1, A1, 3X, 28A1
ZM boundary altitude (km). If IMMAX < 0, altitude levels are
computed from pressure levels PM. If any altitude levels are
provided, they are ignored if IMMAX < 0 (exception: The
first input level must have an accompanying ZM for input
into the hydrostatic equation)
PM pressure (units and input options set by JCHARP)
TM temperature (units and input options set by JCHART)
JCHARP flag for units and input options for pressure (see Table II)
JCHART flag for units and input options for temperature (see Table II)
JCHAR(K) flag for units and input options for
the K'th molecule (see Table II)
RECORD 3.6.1 ... 3.6.N
VMOL(K), K=1, NMOL
8E10.3
VMOL(K) density of the K'th molecule in units set by JCHAR(K)
REPEAT records 3.5 and 3.6.1 to 3.6.N for each of the remaining IMMAX boundaries
-----------------------------------------------------------------------------
User Defined Atmospheric Profile
-------------------------------- (IPRFL = 0) --------------------------------
RECORD 3.8
LAYX, IZORP, XTITLE
5, 10, 11-60
I5, I5 A50
LAYX number of atmospheric profile boundaries
IZORP (0,1) flag which determines value of ZORP on Record 3.8.1
= 0 ZORP is an altitude in KM
= 1 ZORP is a pressure in millibars
XTITLE 50 character description of profile
RECORD 3.8.1
ZORP, (JCHAR(K),K =1,28)
1-10, 16 through 50
F10.3, 5X, 35A1
ZORP boundary altitude (km) or pressure (millibars) as determined by IZORP on Record 3.8
JCHAR(K) flag for units and input options for
the K'th cross-section
JCHAR = 1-1 - default to value for specified model atmosphere
= " ",A - volume mixing ratio (ppmv)
RECORD 3.8.2 ... 3.8.N
DENX(K), K=1, IXMOLS
8E10.3
DENX(K) density of the K'th cross-section in units set by JCHAR(K)
REPEAT records 3.8.1 to 3.8.N for each of the remaining LAYX boundaries
----------------------------------------------------------------------------
TABLE I. RRTM Bands and Included Species
Band # Wavenumber Range (cm-1) 1050 - 96 mb 96 - 0.01 mb
16 2600-3250 H2O,CH4 CH4
17 3250-4000 H2O,CO2 H2O,CO2
18 4000-4650 H2O,CH4 CH4
19 4650-5150 H2O,CO2 CO2
20 5150-6150 H2O,CH4* H2O,CH4*
21 6150-7700 H2O,CO2 H2O,CO2
22 7700-8050 H2O,O2 O2
23 8050-12850 H2O nothing
24 12850-16000 H2O,O2,O3* O2,O3*
25 16000-22650 H2O,O3* O3*
26 22650-29000 nothing nothing
20 29000-38000 O3 O3
28 38000-50000 O3,O2 O3,O2
29 820-2600 H2O CO2
* Included as minor species.
TABLE II. Units and input options for the K'th molecule
TABLE II
USER OPTIONS FOR PRESSURE, TEMPERATURE, AND MOLECULAR DENSITY
JCHARP
PRESSURE 1-6 default to value for specified model atmosphere
(JCHARP) " ",A pressure in (mb)
B " " (atm)
C " " (torr)
JCHART
TEMPERATURE 1-6 default to value for specified model atmosphere
(JCHART) " ",A ambient temperature in deg (K)
B " " " " " " (C)
JCHAR(M)
(M): AVAILABLE ( 1) H2O ( 2) CO2 ( 3) O3 ( 4) N2O ( 5) CO ( 6) CH4 ( 7) O2
MOLECULAR SPECIES ( 8) NO ( 9) SO2 (10) NO2 (11) NH3 (12) HNO3 (13) OH (14) HF
(15) HCL (16) HBR (17) HI (18) CLO (19) OCS (20) H2CO (21) HOCL
(22) N2 (23) HCN (24) CH3CL (25) H2O2 (26) C2H2 (27) C2H6 (28) PH3
(29) COF2 (30) SF6 (31) H2S (32) HCOOH (33) EMPTY (34) EMPTY (35) EMPTY
potential choice of units for above species:
JCHAR = 1-6 - default to value for specified model atmosphere
= " ",A - volume mixing ratio (ppmv)
= B - number density (cm-3)
= C - mass mixing ratio (gm/kg)
= D - mass density (gm m-3)
= E - partial pressure (mb)
= F - dew point temp (K) *H2O only*
= G - dew point temp (C) *H2O only*
= H - relative humidity (percent) *H2O only*
= I - available for user definition
JCHAR must be less than "J"
****************************************************************************
IN_CLD_RRTM Instructions (this file required if ICLD = 1 in Record 1.2 of INPUT_RRTM)
--------------------------
RECORD C1.1
INFLAG, ICEFLAG, LIQFLAG
5 10 15
4X, I1, 4X, I1, 4X, I1
Note: ICEFLAG and LIQFLAG are required only if INFLAG = 2.
INFLAG = 0 direct specification of optical depths of clouds;
cloud fraction and cloud optical depth (gray), single scattering albedo,
and N-str moments of the phase function
= 2 calculation of separate ice and liquid cloud optical depths, with
parameterizations determined by values of ICEFLAG and LIQFLAG.
Cloud fraction, cloud water path, cloud ice fraction, and
effective ice radius are input for each cloudy layer for all
parameterizations. If LIQFLAG = 1, effective liquid droplet radius
is also needed. If ICEFLAG = 1, generalized effective size is
is also needed.
ICEFLAG = 2 the optical properties are computed by a method based on the parameterization
of spherical ice particles in the RT code, STREAMER v3.0 (Reference:
Key. J., Streamer User's Guide, Cooperative Institute for
Meteorological Satellite Studies, 2001, 96 pp.).
= 3 the optical properties are computed by a method based on the parameterization
of ice clouds due to Q. Fu, J. Clim., 9, 2058 (1996).
LIQFLAG = 1 the optical depths (non-gray) due to water clouds are computed by a method
based on the parameterization of water clouds due to Y.X. Hu and K. Stamnes,
J. Clim., 6, 728-742 (1993).
These methods are further detailed in the comments in the routine 'cldprop_sw.f'.
RECORD C1.2 (one record for each cloudy layer, if INFLAG = 0)
TESTCHAR, LAY, CLDFRAC**, TAUCLD or CWP,SINGLE-SCAT, PMOM(0:NSTR)
ALBEDO
1, 3-5, 6-15, 16-25, 26-35, 36-196
A1, 1X, I3, E10.5, E10.5, E10.5, 16E10.5
TESTCHAR control character -- if equal to '%', cloud input processing
is terminated
LAY layer number of cloudy layer. The layer numbering refers to the
ordering for the upward radiative transfer, i.e. botton to top.
For IATM = 0 (Record 1.2), each layer's number is equal to the
position of its Record 2.1.1 in the grouping of these records.
For example, the second Record 2.1.1 occurring after Record 2.1
corresponds to the second layer. For IATM = 1 (Record 1.2) and
IBMAX > 0 (Record 3.1), layer n corresponds to the region between
altitudes n and n+1 in the list of layer boundaries in Record 3.3B.
For IATM = 1 (Record 1.2) and IBMAX = 0 (Record 3.1), the layer
numbers can be determined by running RRTM for the cloudless case
and examining the TAPE6 output from this run.
CLDFRAC cloud fraction for the layer (**NOTE: In this version of RRTM_SW,
CLDFRAC must be set to 1. Partial cloudiness routine not yet implemented.)
TAUCLD (INFLAG = 0 only) total (ice and water) optical depth for the layer
SINGLE-SCATTERING SIngle-scattering albedo for cloudy layer (unitless)
ALBEDO
PMOM Moments of the phase function, from 0 to NSTR. (unitless)
Note: The true optical depth,single-scattering albedo, and phase function moments must be input.
The Delta-M scaling, using the standard Henyey-Greenstein approach, is applied to the
input cloud properties.
RECORD C1.3 (one record for each cloudy layer, INFLAG = 2)
TESTCHAR, LAY, CLDFRAC**, TAUCLD or CWP, FRACICE, EFFSIZEICE, EFFSIZELIQ
1, 3-5, 6-15, 16-25, 26-35, 36-45, 46-55
A1, 1X, I3, E10.5, E10.5, E10.5, E10.5, E10.5
TESTCHAR control character -- if equal to '%', cloud input processing
is terminated
LAY layer number of cloudy layer. The layer numbering refers to the
ordering for the upward radiative transfer, i.e. botton to top.
For IATM = 0 (Record 1.2), each layer's number is equal to the
position of its Record 2.1.1 in the grouping of these records.
For example, the second Record 2.1.1 occurring after Record 2.1
corresponds to the second layer. For IATM = 1 (Record 1.2) and
IBMAX > 0 (Record 3.1), layer n corresponds to the region between
altitudes n and n+1 in the list of layer boundaries in Record 3.3B.
For IATM = 1 (Record 1.2) and IBMAX = 0 (Record 3.1), the layer
numbers can be determined by running RRTM for the cloudless case
and examining the TAPE6 output from this run.
CLDFRAC cloud fraction for the layer.(**NOTE: In this version of RRTM_SW,
CLDFRAC must be set to 1. Partial cloudiness routine not yet implemented.)
TAUCLD (INFLAG = 0 only) total (ice and water) optical depth for the layer
or CWP (INFLAG > 0) cloud water path for the layer (g/m2)
FRACICE (INFLAG = 2) fraction of the layer's cloud water path in the form
of ice particles
EFFSIZEICE (INFLAG = 2 and ICEFLAG = 2) Effective radius of spherical
ice crystals, re (see STREAMER manual for defition of this parameter)
Valid sizes are 5.0 - 131.0 microns.
(INFLAG = 2 and ICEFLAG = 3) Generalized effective size of hexagonal
ice crystals, dge (see Q. Fu, 1996, for definition of this parameter)
Valid sizes are 5.0 - 140.0 microns.
NOTE: The size descriptions for the two iceflag options are NOT
equivalent. See the particular references for the appropriate definition.
EFFSIZELIQ (INFLAG = 2 and LIQFLAG = 1) liquid droplet effective radius, re (microns)
Valid sizes are 2.5 - 60.0 microns.
IN_AER_RRTM Instructions (this file required if IAER = 1 in Record 1.2 of INPUT_RRTM)
--------------------------
RECORD A1.1
NAER
5
3X, I2
NAER number of different aerosol types (maximum of 99). An aerosol type is characterized by a specified
spectral dependence of aerosol optical depth, single-scattering albedo, and phase function; a change
to any of these quantities requires a new aerosol type. Each aerosol type requires the presence of
Records A2.1 - A2.3.
RECORD A2.1
NLAY, IAOD, ISSA, IPHA, (AERPAR(I),I=1,3)
5, 10, 15, 20, 21-44
3X, I2, 4X, I1, 4X, I1, 4X, I1, 3F8.2
NLAY number of layers containing the aerosol with the specified properties: spectral dependence of aerosol
optical depth (IAOD,AERPAR), single-scattering albedo (ISSA, SSA), and phase function (IPHA,PHASE).
Note that each layer can contain only one aerosol type.
IAOD (0,1) flag for specifying the spectral dependence of aerosol optical depth
= 0 spectral dependence determined by Angstrom-like relationship (Molineaux et al.; see below)
with variables AERPAR(1), AERPAR(2), and AERPAR(3)
= 1 aerosol optical depths directly input for each layer and band in Record A2.1.1
ISSA (0,1) flag for gray or spectrally dependent single scattering albedo
= 0 gray SSA (equal to SSA(16))
= 1 spectrally dependent SSA (for band IB, equal to SSA(IB))
IPHA (0,1,2) phase function flag
= 0 spectrally gray phase function (equal to PHASE(16) in first and only Record A2.3); uses
Henyey-Greenstein phase function
= 1 spectrally dependent phase function (for band IB, equal to PHASE(IB) in first and only
Record A2.3); uses Henyey-Greenstein phase function
= 2 direct specification of moments of phase function. See Record A2.3.
AERPAR (only used if IAOD = 0) array of parameters for obtaining aerosol optical depth as a
function of wavelength, as described below:
AOD = AOD1 * (AERPAR(2) + AERPAR(3) * (lambda/lambda1)) /
((AERPAR(2) + AERPAR(3) - 1) + (lambda/lambda1)**AERPAR(1))
where
lambda = wavelength in microns
lambda1 = 1 micron
AOD = aerosol optical depth at wavelength lambda
AOD1 = aerosol optical depth at 1 micron (see Record A2.1.1).
This is a version of Eq. 13 from Molineaux et al, Appl. Optics, 1998. The default values of
AERPAR(1), AERPAR(2), and AERPAR(3), which are 0, 1, and 0, respectively, yield an aerosol
with spectrally grey extinction.
(Note: To obtain Angstrom relation, set AERPAR(2)=1., AERPAR(3)=0., and AERPAR(1) equal to
Angstrom exponent.)
RECORD A2.1.1
(if IAOD = 0)
LAY, AOD1
5, 6-12
2X, I3, F7.4
(if IAOD = 1)
LAY, (AOD(IB),IB=16,29)
5, 6-103
2X, I3, 14F7.4
LAY layer number of aerosol layer. (The layer numbering refers to the
ordering for the upward radiative transfer, i.e. bottom to top.
For IATM = 0 (Record 1.2), each layer's number is equal to the
position of its Record 2.1.1 in the grouping of these records.
For example, the second Record 2.1.1 occurring after Record 2.1
corresponds to the second layer. For IATM = 1 (Record 1.2) and
IBMAX > 0 (Record 3.1), layer n corresponds to the region between
altitudes n and n+1 in the list of layer boundaries in Record 3.3B.
For IATM = 1 (Record 1.2) and IBMAX = 0 (Record 3.1), the layer
numbers can be determined by running RRTM for the cloudless case
and examining the TAPE6 output from this run.
(if IAOD = 0)
AOD1 aerosol optical depth at 1 micron; can be used to scale the amount of aerosols in the
layer; see Record A2.1
(if IAOD = 1)
AOD aerosol optical depth for each band
REPEAT RECORD A2.1.1 for the remaining layers containing this aerosol type. There should be NLAY
records A2.1.1
RECORD A2.2
(SSA(IB),IB=16,29)
(1-70)
14F5.2
SSA Single scattering albedo for each band; must be equal to or greater than zero and
less than or equal to 1. If ISSA equals 0, then only the first value of SSA (SSA(16))
is considered. There should only be one Record A2.2 for each aerosol type.
RECORD A2.3
(PHASE(IB),IB=16,29)
(1-70)
14F5.2
PHASE Moments of the phase function for all IB bands. Each record A2.3 (1 through N, where N is the
number of streams) contains the nth moment for each band. In this implementation, the phase
function P(u) for each band is defined as:
P(u) = sum over streams l { (2l+1) (PHASE_l) (P_l(u)) }
where
u = cos(theta)
PHASE_l = the lth moment of the phase function
P_l(u) = lth Legendre polynomial,
and the number of streams to be used in DISORT (using the delta-M method) is determined
by the value of ISTRM in Record 1.2 of INPUT_RRTM.
For IPHA = 0 or IPHA = 1, the Henyey-Greenstein phase function is used and only the first
moment of the phase function needs to be specified, so only one Record A2.3 is read.
(Note: The first moment of the phase function is the asymmetry parameter.) If IPHA equals
0, then only the first value of PHASE (PHASE(16)) is considered.
For IPHA = 2, the number of A2.3 records should be equal to the number of streams.
REPEAT RECORDS A2.1 through A2.3 for the remaining aerosol types. There should be NAER
sets (A2.1 through A2.3) of records.