forked from numactl/numactl
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnumastat.c
1535 lines (1438 loc) · 60.3 KB
/
numastat.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
numastat - NUMA monitoring tool to show per-node usage of memory
Copyright (C) 2012 Bill Gray ([email protected]), Red Hat Inc
numastat is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation; version 2.1.
numastat is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should find a copy of v2.1 of the GNU Lesser General Public License
somewhere on your Linux system; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
Historical note: From approximately 2003 to 2012, numastat was a perl script
written by Andi Kleen to display the /sys/devices/system/node/node<N>/numastat
statistics. In 2012, numastat was rewritten as a C program by Red Hat to
display per-node memory data for applications and the system in general,
while also remaining strictly compatible by default with the original numastat.
A copy of the original numastat perl script is included for reference at the
end of this file.
*/
// Compile with: gcc -O -std=gnu99 -Wall -o numastat numastat.c
#define __USE_MISC
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <getopt.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#define STRINGIZE(s) #s
#define STRINGIFY(s) STRINGIZE(s)
#define KILOBYTE (1024)
#define MEGABYTE (1024 * 1024)
#define BUF_SIZE 2048
#define SMALL_BUF_SIZE 128
// Don't assume nodes are sequential or contiguous.
// Need to discover and map node numbers.
int *node_ix_map = NULL;
char **node_header;
// Structure to organize memory info from /proc/<PID>/numa_maps for a specific
// process, or from /sys/devices/system/node/node?/meminfo for system-wide
// data. Tables are defined below for each process and for system-wide data.
typedef struct meminfo {
int index;
char *token;
char *label;
} meminfo_t, *meminfo_p;
#define PROCESS_HUGE_INDEX 0
#define PROCESS_PRIVATE_INDEX 3
meminfo_t process_meminfo[] = {
{ PROCESS_HUGE_INDEX, "huge", "Huge" },
{ 1, "heap", "Heap" },
{ 2, "stack", "Stack" },
{ PROCESS_PRIVATE_INDEX, "N", "Private" }
};
#define PROCESS_MEMINFO_ROWS (sizeof(process_meminfo) / sizeof(process_meminfo[0]))
meminfo_t numastat_meminfo[] = {
{ 0, "numa_hit", "Numa_Hit" },
{ 1, "numa_miss", "Numa_Miss" },
{ 2, "numa_foreign", "Numa_Foreign" },
{ 3, "interleave_hit", "Interleave_Hit" },
{ 4, "local_node", "Local_Node" },
{ 5, "other_node", "Other_Node" },
};
#define NUMASTAT_MEMINFO_ROWS (sizeof(numastat_meminfo) / sizeof(numastat_meminfo[0]))
meminfo_t system_meminfo[] = {
{ 0, "MemTotal", "MemTotal" },
{ 1, "MemFree", "MemFree" },
{ 2, "MemUsed", "MemUsed" },
{ 3, "HighTotal", "HighTotal" },
{ 4, "HighFree", "HighFree" },
{ 5, "LowTotal", "LowTotal" },
{ 6, "LowFree", "LowFree" },
{ 7, "Active", "Active" },
{ 8, "Inactive", "Inactive" },
{ 9, "Active(anon)", "Active(anon)" },
{ 10, "Inactive(anon)", "Inactive(anon)" },
{ 11, "Active(file)", "Active(file)" },
{ 12, "Inactive(file)", "Inactive(file)" },
{ 13, "Unevictable", "Unevictable" },
{ 14, "Mlocked", "Mlocked" },
{ 15, "Dirty", "Dirty" },
{ 16, "Writeback", "Writeback" },
{ 17, "FilePages", "FilePages" },
{ 18, "Mapped", "Mapped" },
{ 19, "AnonPages", "AnonPages" },
{ 20, "Shmem", "Shmem" },
{ 21, "KernelStack", "KernelStack" },
{ 22, "PageTables", "PageTables" },
{ 23, "NFS_Unstable", "NFS_Unstable" },
{ 24, "Bounce", "Bounce" },
{ 25, "WritebackTmp", "WritebackTmp" },
{ 26, "Slab", "Slab" },
{ 27, "SReclaimable", "SReclaimable" },
{ 28, "SUnreclaim", "SUnreclaim" },
{ 29, "AnonHugePages", "AnonHugePages" },
{ 30, "ShmemHugePages", "ShmemHugePages" },
{ 31, "ShmemPmdMapped", "ShmemPmdMapped" },
{ 32, "HugePages_Total", "HugePages_Total" },
{ 33, "HugePages_Free", "HugePages_Free" },
{ 34, "HugePages_Surp", "HugePages_Surp" },
{ 35, "KReclaimable", "KReclaimable" }
};
#define SYSTEM_MEMINFO_ROWS (sizeof(system_meminfo) / sizeof(system_meminfo[0]))
// To allow re-ordering the meminfo memory categories in system_meminfo and
// numastat_meminfo relative to order in /proc, etc., a simple hash index is
// used to look up the meminfo categories. The allocated hash table size must
// be bigger than necessary to reduce collisions (and because these specific
// hash algorithms depend on having some unused buckets.
#define HASH_TABLE_SIZE 151
int hash_collisions = 0;
struct hash_entry {
char *name;
int index;
} hash_table[HASH_TABLE_SIZE];
void init_hash_table(void)
{
memset(hash_table, 0, sizeof(hash_table));
}
int hash_ix(char *s)
{
unsigned int h = 17;
while (*s) {
// h * 33 + *s++
h = ((h << 5) + h) + *s++;
}
return (h % HASH_TABLE_SIZE);
}
int hash_lookup(char *s)
{
int ix = hash_ix(s);
while (hash_table[ix].name) { // Assumes big table with blank entries
if (!strcmp(s, hash_table[ix].name)) {
return hash_table[ix].index; // found it
}
ix += 1;
if (ix >= HASH_TABLE_SIZE) {
ix = 0;
}
}
return -1;
}
int hash_insert(char *s, int i)
{
int ix = hash_ix(s);
while (hash_table[ix].name) { // assumes no duplicate entries
hash_collisions += 1;
ix += 1;
if (ix >= HASH_TABLE_SIZE) {
ix = 0;
}
}
hash_table[ix].name = s;
hash_table[ix].index = i;
return ix;
}
// To decouple details of table display (e.g. column width, line folding for
// display screen width, et cetera) from acquiring the data and populating the
// tables, this semi-general table handling code is used. There are various
// routines to set table attributes, assign and test some cell contents,
// initialize and actually display the table.
#define CELL_TYPE_NULL 0
#define CELL_TYPE_LONG 1
#define CELL_TYPE_DOUBLE 2
#define CELL_TYPE_STRING 3
#define CELL_TYPE_CHAR8 4
#define CELL_TYPE_REPCHAR 5
#define CELL_FLAG_FREEABLE (1 << 0)
#define CELL_FLAG_ROWSPAN (1 << 1)
#define CELL_FLAG_COLSPAN (1 << 2)
#define COL_JUSTIFY_LEFT (1 << 0)
#define COL_JUSTIFY_RIGHT (1 << 1)
#define COL_JUSTIFY_CENTER 3
#define COL_JUSTIFY_MASK 0x3
#define COL_FLAG_SEEN_DATA (1 << 2)
#define COL_FLAG_NON_ZERO_DATA (1 << 3)
#define COL_FLAG_ALWAYS_SHOW (1 << 4)
#define ROW_FLAG_SEEN_DATA COL_FLAG_SEEN_DATA
#define ROW_FLAG_NON_ZERO_DATA COL_FLAG_NON_ZERO_DATA
#define ROW_FLAG_ALWAYS_SHOW COL_FLAG_ALWAYS_SHOW
typedef struct cell {
uint32_t type;
uint32_t flags;
union {
char *s;
double d;
int64_t l;
char c[8];
};
} cell_t, *cell_p;
typedef struct vtab {
int header_rows;
int header_cols;
int data_rows;
int data_cols;
cell_p cell;
int *row_ix_map;
uint8_t *row_flags;
uint8_t *col_flags;
uint8_t *col_width;
uint8_t *col_decimal_places;
} vtab_t, *vtab_p;
#define ALL_TABLE_ROWS (table->header_rows + table->data_rows)
#define ALL_TABLE_COLS (table->header_cols + table->data_cols)
#define GET_CELL_PTR(row, col) (&table->cell[(row * ALL_TABLE_COLS) + col])
#define USUAL_GUTTER_WIDTH 1
void set_row_flag(vtab_p table, int row, int flag)
{
table->row_flags[row] |= (uint8_t)flag;
}
void set_col_flag(vtab_p table, int col, int flag)
{
table->col_flags[col] |= (uint8_t)flag;
}
void clear_row_flag(vtab_p table, int row, int flag)
{
table->row_flags[row] &= (uint8_t)~flag;
}
void clear_col_flag(vtab_p table, int col, int flag)
{
table->col_flags[col] &= (uint8_t)~flag;
}
int test_row_flag(vtab_p table, int row, int flag)
{
return ((table->row_flags[row] & (uint8_t)flag) != 0);
}
int test_col_flag(vtab_p table, int col, int flag)
{
return ((table->col_flags[col] & (uint8_t)flag) != 0);
}
void set_col_justification(vtab_p table, int col, int justify)
{
table->col_flags[col] &= (uint8_t)~COL_JUSTIFY_MASK;
table->col_flags[col] |= (uint8_t)(justify & COL_JUSTIFY_MASK);
}
void set_col_width(vtab_p table, int col, uint8_t width)
{
if (width >= SMALL_BUF_SIZE) {
width = SMALL_BUF_SIZE - 1;
}
table->col_width[col] = width;
}
void set_col_decimal_places(vtab_p table, int col, uint8_t places)
{
table->col_decimal_places[col] = places;
}
void set_cell_flag(vtab_p table, int row, int col, int flag)
{
cell_p c_ptr = GET_CELL_PTR(row, col);
c_ptr->flags |= (uint32_t)flag;
}
void clear_cell_flag(vtab_p table, int row, int col, int flag)
{
cell_p c_ptr = GET_CELL_PTR(row, col);
c_ptr->flags &= (uint32_t)~flag;
}
int test_cell_flag(vtab_p table, int row, int col, int flag)
{
cell_p c_ptr = GET_CELL_PTR(row, col);
return ((c_ptr->flags & (uint32_t)flag) != 0);
}
void string_assign(vtab_p table, int row, int col, char *s)
{
cell_p c_ptr = GET_CELL_PTR(row, col);
c_ptr->type = CELL_TYPE_STRING;
c_ptr->s = s;
}
void repchar_assign(vtab_p table, int row, int col, char c)
{
cell_p c_ptr = GET_CELL_PTR(row, col);
c_ptr->type = CELL_TYPE_REPCHAR;
c_ptr->c[0] = c;
}
void double_assign(vtab_p table, int row, int col, double d)
{
cell_p c_ptr = GET_CELL_PTR(row, col);
c_ptr->type = CELL_TYPE_DOUBLE;
c_ptr->d = d;
}
void long_assign(vtab_p table, int row, int col, int64_t l)
{
cell_p c_ptr = GET_CELL_PTR(row, col);
c_ptr->type = CELL_TYPE_LONG;
c_ptr->l = l;
}
void double_addto(vtab_p table, int row, int col, double d)
{
cell_p c_ptr = GET_CELL_PTR(row, col);
c_ptr->type = CELL_TYPE_DOUBLE;
c_ptr->d += d;
}
void long_addto(vtab_p table, int row, int col, int64_t l)
{
cell_p c_ptr = GET_CELL_PTR(row, col);
c_ptr->type = CELL_TYPE_LONG;
c_ptr->l += l;
}
void clear_assign(vtab_p table, int row, int col)
{
cell_p c_ptr = GET_CELL_PTR(row, col);
memset(c_ptr, 0, sizeof(cell_t));
}
void zero_table_data(vtab_p table, int type)
{
// Sets data area of table to zeros of specified type
for (int row = table->header_rows; (row < ALL_TABLE_ROWS); row++) {
for (int col = table->header_cols; (col < ALL_TABLE_COLS); col++) {
cell_p c_ptr = GET_CELL_PTR(row, col);
memset(c_ptr, 0, sizeof(cell_t));
c_ptr->type = type;
}
}
}
void sort_rows_descending_by_col(vtab_p table, int start_row, int stop_row, int col)
{
// Rearrange row_ix_map[] indices so the rows will be in
// descending order by the value in the specified column
for (int ix = start_row; (ix <= stop_row); ix++) {
int biggest_ix = ix;
cell_p biggest_ix_c_ptr = GET_CELL_PTR(table->row_ix_map[ix], col);
for (int iy = ix + 1; (iy <= stop_row); iy++) {
cell_p iy_c_ptr = GET_CELL_PTR(table->row_ix_map[iy], col);
if (biggest_ix_c_ptr->d < iy_c_ptr->d) {
biggest_ix_c_ptr = iy_c_ptr;
biggest_ix = iy;
}
}
if (biggest_ix != ix) {
int tmp = table->row_ix_map[ix];
table->row_ix_map[ix] = table->row_ix_map[biggest_ix];
table->row_ix_map[biggest_ix] = tmp;
}
}
}
void span(vtab_p table, int first_row, int first_col, int last_row, int last_col)
{
// FIXME: implement row / col spannnig someday?
}
void init_table(vtab_p table, int header_rows, int header_cols, int data_rows, int data_cols)
{
// init table sizes
table->header_rows = header_rows;
table->header_cols = header_cols;
table->data_rows = data_rows;
table->data_cols = data_cols;
// allocate memory for all the cells
int alloc_size = ALL_TABLE_ROWS * ALL_TABLE_COLS * sizeof(cell_t);
table->cell = malloc(alloc_size);
if (table->cell == NULL) {
perror("malloc failed line: " STRINGIFY(__LINE__));
exit(EXIT_FAILURE);
}
memset(table->cell, 0, alloc_size);
// allocate memory for the row map vector
alloc_size = ALL_TABLE_ROWS * sizeof(int);
table->row_ix_map = malloc(alloc_size);
if (table->row_ix_map == NULL) {
perror("malloc failed line: " STRINGIFY(__LINE__));
exit(EXIT_FAILURE);
}
for (int row = 0; (row < ALL_TABLE_ROWS); row++) {
table->row_ix_map[row] = row;
}
// allocate memory for the row flags vector
alloc_size = ALL_TABLE_ROWS * sizeof(uint8_t);
table->row_flags = malloc(alloc_size);
if (table->row_flags == NULL) {
perror("malloc failed line: " STRINGIFY(__LINE__));
exit(EXIT_FAILURE);
}
memset(table->row_flags, 0, alloc_size);
// allocate memory for the column flags vector
alloc_size = ALL_TABLE_COLS * sizeof(uint8_t);
table->col_flags = malloc(alloc_size);
if (table->col_flags == NULL) {
perror("malloc failed line: " STRINGIFY(__LINE__));
exit(EXIT_FAILURE);
}
memset(table->col_flags, 0, alloc_size);
// allocate memory for the column width vector
alloc_size = ALL_TABLE_COLS * sizeof(uint8_t);
table->col_width = malloc(alloc_size);
if (table->col_width == NULL) {
perror("malloc failed line: " STRINGIFY(__LINE__));
exit(EXIT_FAILURE);
}
memset(table->col_width, 0, alloc_size);
// allocate memory for the column precision vector
alloc_size = ALL_TABLE_COLS * sizeof(uint8_t);
table->col_decimal_places = malloc(alloc_size);
if (table->col_decimal_places == NULL) {
perror("malloc failed line: " STRINGIFY(__LINE__));
exit(EXIT_FAILURE);
}
memset(table->col_decimal_places, 0, alloc_size);
}
void free_cell(vtab_p table, int row, int col)
{
cell_p c_ptr = GET_CELL_PTR(row, col);
if ((c_ptr->type == CELL_TYPE_STRING)
&& (c_ptr->flags & CELL_FLAG_FREEABLE)
&& (c_ptr->s != NULL)) {
free(c_ptr->s);
}
memset(c_ptr, 0, sizeof(cell_t));
}
void free_table(vtab_p table)
{
if (table->cell != NULL) {
for (int row = 0; (row < ALL_TABLE_ROWS); row++) {
for (int col = 0; (col < ALL_TABLE_COLS); col++) {
free_cell(table, row, col);
}
}
free(table->cell);
}
if (table->row_ix_map != NULL) {
free(table->row_ix_map);
}
if (table->row_flags != NULL) {
free(table->row_flags);
}
if (table->col_flags != NULL) {
free(table->col_flags);
}
if (table->col_width != NULL) {
free(table->col_width);
}
if (table->col_decimal_places != NULL) {
free(table->col_decimal_places);
}
}
char *fmt_cell_data(cell_p c_ptr, int max_width, int decimal_places)
{
// Returns pointer to a static buffer, expecting caller to
// immediately use or copy the contents before calling again.
int rep_width = max_width - USUAL_GUTTER_WIDTH;
static char buf[SMALL_BUF_SIZE];
switch (c_ptr->type) {
case CELL_TYPE_NULL:
buf[0] = '\0';
break;
case CELL_TYPE_LONG:
snprintf(buf, SMALL_BUF_SIZE, "%ld", c_ptr->l);
break;
case CELL_TYPE_DOUBLE:
snprintf(buf, SMALL_BUF_SIZE, "%.*f", decimal_places, c_ptr->d);
break;
case CELL_TYPE_STRING:
snprintf(buf, SMALL_BUF_SIZE, "%s", c_ptr->s);
break;
case CELL_TYPE_CHAR8:
strncpy(buf, c_ptr->c, 8);
buf[8] = '\0';
break;
case CELL_TYPE_REPCHAR:
memset(buf, c_ptr->c[0], rep_width);
buf[rep_width] = '\0';
break;
default:
strcpy(buf, "Unknown");
break;
}
buf[max_width] = '\0';
return buf;
}
void auto_set_col_width(vtab_p table, int col, int min_width, int max_width)
{
int width = min_width;
for (int row = 0; (row < ALL_TABLE_ROWS); row++) {
cell_p c_ptr = GET_CELL_PTR(row, col);
if (c_ptr->type == CELL_TYPE_REPCHAR) {
continue;
}
char *p = fmt_cell_data(c_ptr, max_width, (int)(table->col_decimal_places[col]));
int l = strlen(p);
if (width < l) {
width = l;
}
}
width += USUAL_GUTTER_WIDTH;
if (width > max_width) {
width = max_width;
}
table->col_width[col] = (uint8_t)width;
}
void display_justified_cell(cell_p c_ptr, int row_flags, int col_flags, int width, int decimal_places)
{
char *p = fmt_cell_data(c_ptr, width, decimal_places);
int l = strlen(p);
char buf[SMALL_BUF_SIZE];
switch (col_flags & COL_JUSTIFY_MASK) {
case COL_JUSTIFY_LEFT:
memcpy(buf, p, l);
if (l < width) {
memset(&buf[l], ' ', width - l);
}
break;
case COL_JUSTIFY_RIGHT:
if (l < width) {
memset(buf, ' ', width - l);
}
memcpy(&buf[width - l], p, l);
break;
case COL_JUSTIFY_CENTER:
default:
memset(buf, ' ', width);
memcpy(&buf[(width - l + 1) / 2], p, l);
break;
}
buf[width] = '\0';
printf("%s", buf);
}
void display_table(vtab_p table,
int screen_width,
int show_unseen_rows,
int show_unseen_cols,
int show_zero_rows,
int show_zero_cols)
{
// Set row and column flags according to whether data in rows and cols
// has been assigned, and is currently non-zero.
int some_seen_data = 0;
int some_non_zero_data = 0;
for (int row = table->header_rows; (row < ALL_TABLE_ROWS); row++) {
for (int col = table->header_cols; (col < ALL_TABLE_COLS); col++) {
cell_p c_ptr = GET_CELL_PTR(row, col);
// Currently, "seen data" includes not only numeric data, but also
// any strings, etc -- anything non-NULL (other than rephcars).
if ((c_ptr->type != CELL_TYPE_NULL) && (c_ptr->type != CELL_TYPE_REPCHAR)) {
some_seen_data = 1;
set_row_flag(table, row, ROW_FLAG_SEEN_DATA);
set_col_flag(table, col, COL_FLAG_SEEN_DATA);
// Currently, "non-zero data" includes not only numeric data,
// but also any strings, etc -- anything non-zero (other than
// repchars, which are already excluded above). So, note a
// valid non-NULL pointer to an empty string would still be
// counted as non-zero data.
if (c_ptr->l != (int64_t)0) {
some_non_zero_data = 1;
set_row_flag(table, row, ROW_FLAG_NON_ZERO_DATA);
set_col_flag(table, col, COL_FLAG_NON_ZERO_DATA);
}
}
}
}
if (!some_seen_data) {
printf("Table has no data.\n");
return;
}
if (!some_non_zero_data && !show_zero_rows && !show_zero_cols) {
printf("Table has no non-zero data.\n");
return;
}
// Start with first data column and try to display table,
// folding lines as necessary per screen_width
int col = -1;
int data_col = table->header_cols;
while (data_col < ALL_TABLE_COLS) {
// Skip data columns until we have one to display
if ((!test_col_flag(table, data_col, COL_FLAG_ALWAYS_SHOW)) &&
(((!show_unseen_cols) && (!test_col_flag(table, data_col, COL_FLAG_SEEN_DATA))) ||
((!show_zero_cols) && (!test_col_flag(table, data_col, COL_FLAG_NON_ZERO_DATA))))) {
data_col += 1;
continue;
}
// Display blank line between table sections
if (col > 0) {
printf("\n");
}
// For each row, display as many columns as possible
for (int row_ix = 0; (row_ix < ALL_TABLE_ROWS); row_ix++) {
int row = table->row_ix_map[row_ix];
// If past the header rows, conditionally skip rows
if ((row >= table->header_rows) && (!test_row_flag(table, row, ROW_FLAG_ALWAYS_SHOW))) {
// Optionally skip row if no data seen or if all zeros
if (((!show_unseen_rows) && (!test_row_flag(table, row, ROW_FLAG_SEEN_DATA))) ||
((!show_zero_rows) && (!test_row_flag(table, row, ROW_FLAG_NON_ZERO_DATA)))) {
continue;
}
}
// Begin a new row...
int cur_line_width = 0;
// All lines start with the left header columns
for (col = 0; (col < table->header_cols); col++) {
display_justified_cell(GET_CELL_PTR(row, col),
(int)(table->row_flags[row]),
(int)(table->col_flags[col]),
(int)(table->col_width[col]),
(int)(table->col_decimal_places[col]));
cur_line_width += (int)(table->col_width[col]);
}
// Reset column index to starting data column for each new row
col = data_col;
// Try to display as many data columns as possible in every section
for (;;) {
// See if we should print this column
if (test_col_flag(table, col, COL_FLAG_ALWAYS_SHOW) ||
(((show_unseen_cols) || (test_col_flag(table, col, COL_FLAG_SEEN_DATA))) &&
((show_zero_cols) || (test_col_flag(table, col, COL_FLAG_NON_ZERO_DATA))))) {
display_justified_cell(GET_CELL_PTR(row, col),
(int)(table->row_flags[row]),
(int)(table->col_flags[col]),
(int)(table->col_width[col]),
(int)(table->col_decimal_places[col]));
cur_line_width += (int)(table->col_width[col]);
}
col += 1;
// End the line if no more columns or next column would exceed screen width
if ((col >= ALL_TABLE_COLS) ||
((cur_line_width + (int)(table->col_width[col])) > screen_width)) {
break;
}
}
printf("\n");
}
// Remember next starting data column for next section
data_col = col;
}
}
int verbose = 0;
int num_pids = 0;
int num_nodes = 0;
int screen_width = 0;
int show_zero_data = 1;
int compress_display = 0;
int sort_table = 0;
int sort_table_node = -1;
int compatibility_mode = 0;
int pid_array_max_pids = 0;
int *pid_array = NULL;
char *prog_name = NULL;
double page_size_in_bytes = 0;
double huge_page_size_in_bytes = 0;
void display_version_and_exit(void)
{
char *version_string = "20130723";
printf("%s version: %s: %s\n", prog_name, version_string, __DATE__);
exit(EXIT_SUCCESS);
}
void display_usage_and_exit(void)
{
fprintf(stderr, "Usage: %s [-c] [-m] [-n] [-p <PID>|<pattern>] [-s[<node>]] [-v] [-V] [-z] [ <PID>|<pattern>... ]\n", prog_name);
fprintf(stderr, "-c to minimize column widths\n");
fprintf(stderr, "-m to show meminfo-like system-wide memory usage\n");
fprintf(stderr, "-n to show the numastat statistics info\n");
fprintf(stderr, "-p <PID>|<pattern> to show process info\n");
fprintf(stderr, "-s[<node>] to sort data by total column or <node>\n");
fprintf(stderr, "-v to make some reports more verbose\n");
fprintf(stderr, "-V to show the %s code version\n", prog_name);
fprintf(stderr, "-z to skip rows and columns of zeros\n");
exit(EXIT_FAILURE);
}
int get_screen_width(void)
{
int width = 80;
char *p = getenv("NUMASTAT_WIDTH");
if (p != NULL) {
width = atoi(p);
if ((width < 1) || (width > 10000000)) {
width = 80;
}
} else if (isatty(fileno(stdout))) {
FILE *fs = popen("resize 2>/dev/null", "r");
if (fs != NULL) {
char buf[72];
char *columns;
columns = fgets(buf, sizeof(columns), fs);
pclose(fs);
if (columns && strncmp(columns, "COLUMNS=", 8) == 0) {
width = atoi(&columns[8]);
if ((width < 1) || (width > 10000000)) {
width = 80;
}
}
}
} else {
// Not a tty, so allow a really long line
width = 10000000;
}
if (width < 32) {
width = 32;
}
return width;
}
char *command_name_for_pid(int pid)
{
// Get the PID command name field from /proc/PID/status file. Return
// pointer to a static buffer, expecting caller to immediately copy result.
static char buf[SMALL_BUF_SIZE];
char fname[64];
snprintf(fname, sizeof(fname), "/proc/%d/status", pid);
FILE *fs = fopen(fname, "r");
if (!fs) {
return NULL;
} else {
while (fgets(buf, SMALL_BUF_SIZE, fs)) {
if (strstr(buf, "Name:") == buf) {
char *p = &buf[5];
while (isspace(*p)) {
p++;
}
if (p[strlen(p) - 1] == '\n') {
p[strlen(p) - 1] = '\0';
}
fclose(fs);
return p;
}
}
fclose(fs);
}
return NULL;
}
void show_info_from_system_file(char *file, meminfo_p meminfo, int meminfo_rows, int tok_offset)
{
// Setup and init table
vtab_t table;
int header_rows = 2 - compatibility_mode;
int header_cols = 1;
// Add an extra data column for a total column
init_table(&table, header_rows, header_cols, meminfo_rows, num_nodes + 1);
int total_col_ix = header_cols + num_nodes;
// Insert token mapping in hash table and assign left header column label for each row in table
init_hash_table();
for (int row = 0; (row < meminfo_rows); row++) {
hash_insert(meminfo[row].token, meminfo[row].index);
if (compatibility_mode) {
string_assign(&table, (header_rows + row), 0, meminfo[row].token);
} else {
string_assign(&table, (header_rows + row), 0, meminfo[row].label);
}
}
// printf("There are %d table hash collisions.\n", hash_collisions);
// Set left header column width and left justify it
set_col_width(&table, 0, 16);
set_col_justification(&table, 0, COL_JUSTIFY_LEFT);
// Open /sys/devices/system/node/node?/<file> for each node and store data
// in table. If not compatibility_mode, do approximately first third of
// this loop also for (node_ix == num_nodes) to get "Total" column header.
for (int node_ix = 0; (node_ix < (num_nodes + (1 - compatibility_mode))); node_ix++) {
int col = header_cols + node_ix;
// Assign header row label and horizontal line for this column...
string_assign(&table, 0, col, node_header[node_ix]);
if (!compatibility_mode) {
repchar_assign(&table, 1, col, '-');
int decimal_places = 2;
if (compress_display) {
decimal_places = 0;
}
set_col_decimal_places(&table, col, decimal_places);
}
// Set column width and right justify data
set_col_width(&table, col, 16);
set_col_justification(&table, col, COL_JUSTIFY_RIGHT);
if (node_ix == num_nodes) {
break;
}
// Open /sys/.../node<N>/numstast file for this node...
char buf[SMALL_BUF_SIZE];
char fname[64];
snprintf(fname, sizeof(fname), "/sys/devices/system/node/node%d/%s", node_ix_map[node_ix], file);
FILE *fs = fopen(fname, "r");
if (!fs) {
sprintf(buf, "cannot open %s", fname);
perror(buf);
exit(EXIT_FAILURE);
}
// Get table values for this node...
while (fgets(buf, SMALL_BUF_SIZE, fs)) {
char *tok[64];
int tokens = 0;
const char *delimiters = " \t\r\n:";
char *p = strtok(buf, delimiters);
if (p == NULL) {
continue; // Skip blank lines;
}
while (p) {
tok[tokens++] = p;
p = strtok(NULL, delimiters);
}
// example line from numastat file: "numa_miss 16463"
// example line from meminfo file: "Node 3 Inactive: 210680 kB"
int index = hash_lookup(tok[0 + tok_offset]);
if (index < 0) {
printf("Token %s not in hash table.\n", tok[0 + tok_offset]);
} else {
double value = (double)atol(tok[1 + tok_offset]);
if (!compatibility_mode) {
double multiplier = 1.0;
if (tokens < 4) {
multiplier = page_size_in_bytes;
} else if (!strncmp("HugePages", tok[2], 9)) {
multiplier = huge_page_size_in_bytes;
} else if (!strncmp("kB", tok[4], 2)) {
multiplier = KILOBYTE;
}
value *= multiplier;
value /= (double)MEGABYTE;
}
double_assign(&table, header_rows + index, col, value);
double_addto(&table, header_rows + index, total_col_ix, value);
}
}
fclose(fs);
}
// Crompress display column widths, if requested
if (compress_display) {
for (int col = 0; (col < header_cols + num_nodes + 1); col++) {
auto_set_col_width(&table, col, 4, 16);
}
}
// Optionally sort the table data
if (sort_table) {
int sort_col;
if ((sort_table_node < 0) || (sort_table_node >= num_nodes)) {
sort_col = total_col_ix;
} else {
sort_col = header_cols + node_ix_map[sort_table_node];
}
sort_rows_descending_by_col(&table, header_rows, header_rows + meminfo_rows - 1, sort_col);
}
// Actually display the table now, doing line-folding as necessary
display_table(&table, screen_width, 0, 0, show_zero_data, show_zero_data);
free_table(&table);
}
void show_numastat_info(void)
{
if (!compatibility_mode) {
printf("\nPer-node numastat info (in MBs):\n");
}
show_info_from_system_file("numastat", numastat_meminfo, NUMASTAT_MEMINFO_ROWS, 0);
}
void show_system_info(void)
{
printf("\nPer-node system memory usage (in MBs):\n");
show_info_from_system_file("meminfo", system_meminfo, SYSTEM_MEMINFO_ROWS, 2);
}
void show_process_info(void)
{
vtab_t table;
int header_rows = 2;
int header_cols = 1;
int data_rows;
int show_sub_categories = (verbose || (num_pids == 1));
if (show_sub_categories) {
data_rows = PROCESS_MEMINFO_ROWS;
} else {
data_rows = num_pids;
}
// Add two extra rows for a horizontal rule followed by a total row
// Add one extra data column for a total column
init_table(&table, header_rows, header_cols, data_rows + 2, num_nodes + 1);
int total_col_ix = header_cols + num_nodes;
int total_row_ix = header_rows + data_rows + 1;
string_assign(&table, total_row_ix, 0, "Total");
if (show_sub_categories) {
// Assign left header column label for each row in table
for (int row = 0; (row < PROCESS_MEMINFO_ROWS); row++) {
string_assign(&table, (header_rows + row), 0, process_meminfo[row].label);
}
} else {
string_assign(&table, 0, 0, "PID");
repchar_assign(&table, 1, 0, '-');
printf("\nPer-node process memory usage (in MBs)\n");
}
// Set left header column width and left justify it
set_col_width(&table, 0, 16);
set_col_justification(&table, 0, COL_JUSTIFY_LEFT);
// Set up "Node <N>" column headers over data columns, plus "Total" column
for (int node_ix = 0; (node_ix <= num_nodes); node_ix++) {
int col = header_cols + node_ix;
// Assign header row label and horizontal line for this column...
string_assign(&table, 0, col, node_header[node_ix]);
repchar_assign(&table, 1, col, '-');
// Set column width, decimal places, and right justify data
set_col_width(&table, col, 16);
int decimal_places = 2;
if (compress_display) {
decimal_places = 0;
}
set_col_decimal_places(&table, col, decimal_places);
set_col_justification(&table, col, COL_JUSTIFY_RIGHT);
}
// Initialize data in table to all zeros
zero_table_data(&table, CELL_TYPE_DOUBLE);
// If (show_sub_categories), show individual process tables for each PID,
// Otherwise show one big table of process total lines from all the PIDs.
for (int pid_ix = 0; (pid_ix < num_pids); pid_ix++) {
int pid = pid_array[pid_ix];
if (show_sub_categories) {
printf("\nPer-node process memory usage (in MBs) for PID %d (%s)\n", pid, command_name_for_pid(pid));
if (pid_ix > 0) {
// Re-initialize show_sub_categories table, because we re-use it for each PID.
zero_table_data(&table, CELL_TYPE_DOUBLE);
}
} else {
// Put this row's "PID (cmd)" label in left header column for this PID total row
char tmp_buf[64];
snprintf(tmp_buf, sizeof(tmp_buf), "%d (%s)", pid, command_name_for_pid(pid));
char *p = strdup(tmp_buf);
if (p == NULL) {
perror("malloc failed line: " STRINGIFY(__LINE__));
exit(EXIT_FAILURE);
}
string_assign(&table, header_rows + pid_ix, 0, p);
set_cell_flag(&table, header_rows + pid_ix, 0, CELL_FLAG_FREEABLE);
}
// Open numa_map for this PID to get per-node data
char fname[64];
snprintf(fname, sizeof(fname), "/proc/%d/numa_maps", pid);
char buf[BUF_SIZE];
FILE *fs = fopen(fname, "r");
if (!fs) {
sprintf(buf, "Can't read /proc/%d/numa_maps", pid);
perror(buf);
continue;
}