-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmc_cordbloodBatch_revisited.Rmd
668 lines (490 loc) · 25.5 KB
/
mc_cordbloodBatch_revisited.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
---
title: "Cord blood - Batch Analysis"
output:
html_document:
theme: united
toc: yes
toc_depth: 5
pdf_document:
toc: yes
bibliography: references.bib
---
```{r setup, echo=FALSE, warning=FALSE, message=FALSE}
library(knitcitations)
cleanbib()
options("citation_format" = "pandoc")
clientname="Mauricio Cortes"
clientemail="[email protected]"
labPI="Trista North"
lablocation="BIDMC"
analystname="Meeta Mistry"
analystemail="[email protected]"
library(knitr)
opts_chunk$set(warning=FALSE, error=FALSE, message=FALSE, echo=FALSE,cache=FALSE, tidy.opts=list(keep.blank.line=FALSE, width.cutoff=120), dev="svg")
options(width=200)
```
---
Array analysis for `r clientname` (`r clientemail`), `r labPI` group at `r lablocation`.
Contact `r analystname` (`r analystemail`) for additional details.
The most recent update of this html document occurred: `r date()`
The sections below provide code to reproduce the included results and plots.
---
# Methods Summary
## Batch Analyses
Since we observed samples to cluster by batch, it is worth looking for differential expression within batch and comparing results between them, if any.
All Affymetrix HTA 2.0 arrays were processed using the 'oligo' BioConductor package `r citep("10.1093/bioinformatics/btq431")`, quality-controlled with arrayQualityMetrics `r citep("10.1093/bioinformatics/btn647")` and normalized with RMA `r citep("10.1093/biostatistics/4.2.249")`. Differentially expressed genes were identified using limma `r citep("http://link.springer.com/chapter/10.1007%2F0-387-29362-0_23")`.
---
# Setup
## Variables
Working directories, files and other variables necessary to the analysis.
```{r variables}
## Setup Data and Results directory variables
baseDir <- getwd()
dataDir <- file.path(baseDir, "data")
metaDir <- file.path(baseDir, "meta")
resultsDir <- file.path(baseDir, "results_new")
cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7") # colorblind friendly palette
covarsfilename="covars.revised.desc" # tab delimited file describing samples
lowintensity.percentile=0.1
mad.quantile.cutoff=0.1
pvalue.cutoff=0.05
highlight.color="green"
lfc.cutoff=1
```
## Libraries
[Bioconductor](http://www.bioconductor.org) and [R](http://cran.r-project.org/) libraries used to process and visualize the data.
```{r libraries_variables, echo=TRUE}
library(knitr) # for simple tables
library(oligo) # array utilities
library(arrayQualityMetrics) # array quality control reports
library(limma) # array statistical analyses
library(CHBUtils) # some homegrown functions
library(reshape2) # data format utility
library(ggplot2) # pretty graphs
library(ggdendro) # for pretty dendrograms
library(RColorBrewer) # more colors
library(gridExtra) # for arranging multiple plots
library(pheatmap) # pretty heatmaps
library(corrgram)
library(pvca)
library(dplyr) # data format utility
library(hta20sttranscriptcluster.db) #new package for annotation
library(sva) # Surrogate Variable Analysis (includes ComBat)
```
## Functions
```{r functions, echo=FALSE}
# for plotting amount of variation explained by principal components
PCAplot.sd.eset <- function(eset=NULL, title=NULL){
eset.core <- exprs(eset)
myPca.core <- prcomp(t(eset.core))
# SD of components
sdevdf <- data.frame(cbind(as.numeric(myPca.core$sdev),c(1:length(myPca.core$sdev))))
sdevdf$prop <- sdevdf$X1/sum(sdevdf$X1)
sdevdf$cum <- cumsum(sdevdf$prop)
ggplot(sdevdf, aes(x=X2, y=prop)) +
geom_point(size=4, color="red") +
scale_x_continuous('Component') +
scale_y_continuous('Standard Deviation') +
ggtitle(title) +
geom_line(data=sdevdf, aes(x=X2, y=cum))
}
# used for formatting labels on ggplots
fmt <- function(){
function(x) format(x,nsmall = 1,scientific = FALSE)
}
plot_dendro <- function(x, title="", labels.colname=NULL, colors.colname=NULL) {
require(ggdendro)
meta.x <- pData(x)
# force the metadata into character format so you don't end up with gradient/continuous color schemes for numerical variables in the final plot
meta.x <- as.matrix(meta.x)
## do the actual statistics and put into dendrogram
myDist <- dist(t(exprs(x)))
myTree <-hclust(myDist)
dhc <- as.dendrogram(myTree)
ddata <- dendro_data(dhc, type="rectangle")
# the labels of the dendrogram are pulled from the Expression set exprs column names, it's nice to rename them to something more intelligible if you haven't already, as well as match them up to the metadata for label coloring
## check to see if the column names of the expression set match anything in the metadata, or match the rownames
if (identical(colnames(exprs(x)), row.names(meta.x))) {
meta.x <- row2colnames(meta.x, "rownames")
matchcol <- "rownames"
} else if (any(apply(meta.x, 2, function(column) identical(as.character(unlist(column)), colnames(exprs(x)))))) {
matchcol <- names(which(apply(meta.x, 2, function(column) identical(as.character(unlist(column)), colnames(exprs(x))))))
} else {
print("ExpressionSet sampleNames and pData row.names or pData column must match")
stop()
}
## merge the metadata with the dendrogram labels using the commmon column/rownames you just identified above
ddata$labels <- merge(ddata$labels, meta.x, by.x="label", by.y=matchcol)
# plot it like you mean it
ggplot(segment(ddata)) +
geom_segment(aes(x=x, y=y, xend=xend, yend=yend)) +
theme_dendro() +
geom_text(data=label(ddata), aes_string(x='x', y='y', label=labels.colname, color=colors.colname, hjust=-0.1), size=4)+
scale_color_brewer(type = "seq", palette = "Set1")+
coord_flip() + scale_y_reverse(expand=c(0.2, 50)) +
theme(axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.title.x=element_blank(),
axis.title.y=element_blank()) +
ggtitle(title)
}
```
---
# Import Data and Metadata
## Data
- load in phenotypes and array names from metadata file (covars.desc) in "metadata" directory
- this file contains the names and descriptions of CEL files contained in the data directory
### Create new expression set objects to normalize within batch
```{r dataload, results='hide'}
covars <- read.table(file.path(metaDir, covarsfilename),header=TRUE, sep="\t", row.names=1)
# Load data Batch1
covars.b1 <-covars[covars$batch==1,]
celFiles <- file.path(dataDir, row.names(covars.b1))
affyRaw.batch1 <- read.celfiles(celFiles)
pData(affyRaw.batch1) <- covars.b1
sampleNames(affyRaw.batch1) <- pData(affyRaw.batch1)$sampleID
# Load data Batch2
covars.b2 <-covars[covars$batch==2,]
celFiles <- file.path(dataDir, row.names(covars.b2))
affyRaw.batch2 <- read.celfiles(celFiles)
pData(affyRaw.batch2) <- covars.b2
sampleNames(affyRaw.batch2) <- pData(affyRaw.batch2)$sampleID
```
## Sample metadata Batch 1
```{r covars-1, results='asis', echo=FALSE}
# Sample information table
kable(pData(affyRaw.batch1))
```
## Sample metadata Batch 2
```{r covars-2, results='asis', echo=FALSE}
# Sample information table
kable(pData(affyRaw.batch2))
```
---
# PreProcessing
## RMA Normalized Data
- background correct and normalize each dataset with RMA `r citep("10.1093/bioinformatics/19.2.185")`
- summarize probesets on the gene ('core') level
```{r normalize, results='hide'}
affyNorm.core.b1 <- rma(affyRaw.batch1, target="core", background=TRUE, normalize=TRUE)
affyNorm.core.b2 <- rma(affyRaw.batch2, target="core", background=TRUE, normalize=TRUE)
```
### Unsupervised Clustering of RMA Normalized Data
#### Hierarchical Clustering
The goal of these analyses are to naively evaluate the variability within the raw data and determine whether this variability can predict the different treatment groups. **Even within batch we find that the samples cluster better by donor than they do by treatment**
**Batch 1**
```{r cluster-b1, out.width='75%'}
plot_dendro(affyNorm.core.b1, title="", labels.colname="sampleID", colors.colname="treatment")
```
**Batch 2**
```{r cluster-b2, out.width='75%'}
plot_dendro(affyNorm.core.b2, title="", labels.colname="sampleID", colors.colname="treatment")
```
#### Principal Component Analysis (PCA)
This second approach is a dimension reduction and visualization technique that is used to project the multivariate (i.e.multiple genes) data vector of each array into a lower-dimensional plot, such that the spatial arrangement of the points in the plot reflects the overall data (dis)similarity between the arrays. **Similar to the clustering, samples cluster best by donor, and to some extent by treatment in Batch 2.**
```{r PCAsd1, out.width='75%'}
# PCA Batch1
pca <- prcomp(t(exprs(affyNorm.core.b1)))
df <- data.frame(cbind(pca$x, pData(affyNorm.core.b1)))
ggplot(df) +
geom_point(aes(x=PC1, y=PC2, color=treatment), size=6) +
geom_text(aes(x=PC1, y=PC2, label=blooddonor, vjust=-0.5), size=5) +
theme_bw() +
theme(panel.grid.major = element_line(size = .5, color = "grey"),
axis.text.x = element_text(angle=45, hjust=1, vjust=1),
axis.title = element_text(size = rel(1.5)),
axis.text = element_text(size = rel(1.25))) +
ylab("PC2") + xlab("PC1") +
ggtitle('PCA for Batch 1 samples')
# PCA Batch2
pca <- prcomp(t(exprs(affyNorm.core.b2)))
df <- data.frame(cbind(pca$x, pData(affyNorm.core.b2)))
ggplot(df) +
geom_point(aes(x=PC1, y=PC2, color=treatment), size=6) +
geom_text(aes(x=PC1, y=PC2, label=blooddonor, vjust=-0.5), size=5) +
theme_bw() +
ylab("PC2") + xlab("PC1") +
ggtitle('PCA for Batch 2 samples') +
theme(panel.grid.major = element_line(size = .5, color = "grey"),
axis.text.x = element_text(angle=45, hjust=1, vjust=1),
axis.title = element_text(size = rel(1.5)),
axis.text = element_text(size = rel(1.25)))
```
## Annotate
So far we have only been working with the probesets,without reference to the genes they assay. Here we load in metadata about the probesets on the array (feature data), the gene symbols in particular.
```{r features-batch1, results='hide'}
featureData(affyNorm.core.b1) <- getNetAffx(affyNorm.core.b1, "transcript") # this will load the Affymetrix annotation, including the probeID, into the fData
# get gene symbols and entrezIDs for all probesets
fData(affyNorm.core.b1)$symbol <- as.character(unlist(mget(featureNames(affyNorm.core.b1), hta20sttranscriptclusterSYMBOL, ifnotfound=NA))) # curated annotations from Bioconductor
fData(affyNorm.core.b1)$entrezID <- as.character(unlist(mget(featureNames(affyNorm.core.b1), hta20sttranscriptclusterENTREZID, ifnotfound=NA))) # curated annotations from Bioconductor
```
```{r features-batch2, results='hide'}
featureData(affyNorm.core.b2) <- getNetAffx(affyNorm.core.b2, "transcript") # this will load the Affymetrix annotation, including the probeID, into the fData
# get gene symbols and entrezIDs for all probesets
fData(affyNorm.core.b2)$symbol <- as.character(unlist(mget(featureNames(affyNorm.core.b2), hta20sttranscriptclusterSYMBOL, ifnotfound=NA))) # curated annotations from Bioconductor
fData(affyNorm.core.b2)$entrezID <- as.character(unlist(mget(featureNames(affyNorm.core.b2), hta20sttranscriptclusterENTREZID, ifnotfound=NA))) # curated annotations from Bioconductor
```
## Statistical analyses
A linear model for microarray data analysis ([Limma][http://www.bioconductor.org/packages/release/bioc/html/limma.html]) was performed on the samples to identify differentially expressed genes for the comparison of the two treatment groups. Limma fits a linear model to the expression data for all samples for each gene and is designed to handle complex experiments involving comparisons between many RNA targets simultaneously.
### Design matrix
To perform limma, we construct a design matrix which provides a representation of the different sample groups which have been analysed. _Remember that blooddonor is a not a continous variable even though they are numeric characters!_
* make a matrix with arrays as rows, sample groups as columns
* a one or a zero indicate respectively, that a sample either belongs or does not belong to the sample group
#### Batch 1
```{r}
# Make design matrix
pData(affyNorm.core.b1)$blooddonor <- factor(pData(affyNorm.core.b1)$blooddonor)
design.b1 <- model.matrix(~ 0 + treatment + blooddonor , data=pData(affyNorm.core.b1))
kable(design.b1)
```
#### Batch 2
```{r}
# Make design matrix
pData(affyNorm.core.b2)$blooddonor <- factor(pData(affyNorm.core.b2)$blooddonor)
design.b2 <- model.matrix(~ 0 + treatment + blooddonor, data=pData(affyNorm.core.b2))
kable(design.b2)
```
### Linear model
These matrices are used to fit a linear model to the data. The linear model is applied and pairwise comparisons are performed to identify differentially expressed genes. The comparisons are defined based on the contrasts, which select genes that show a significant expression change between the treated samples.
- first fit the linear model based on the design matrix for each gene based on the given series of arrays
- using the contrast matrix, compute estimated coefficients and standard errors for contrasts
- compute moderated t-statistics and log-odds of differential expression by empirical Bayes shrinkage of the standard errors towards a common value
```{r limma-b1,warning=FALSE, message=FALSE}
# Setup constrasts
contrast.b1 <- makeContrasts(treatment=treatment125D3-treatmentDMSO, levels=colnames(design.b1))
# Fit model
fit.core <- lmFit(affyNorm.core.b1, design.b1)
# Compute cofficients for constrasts
fit2b1.core <- contrasts.fit(fit.core, contrast.b1)
# Bayes shrinkage
fit2b1.core <- eBayes(fit2b1.core)
```
```{r limma-b2, warning=FALSE, message=FALSE}
# Setup constrasts
contrast.b2 <- makeContrasts(treatment=treatment125D3-treatmentDMSO, levels=colnames(design.b2))
# Fit model
fit.core <- lmFit(affyNorm.core.b2, design.b2)
# Compute cofficients for constrasts
fit2b2.core <- contrasts.fit(fit.core, contrast.b2)
# Bayes shrinkage
fit2b2.core <- eBayes(fit2b2.core)
```
## Probe-level Results: No filtering
### Batch 1
**At an FDR < 0.05 there are 17 probes differentially expressed between treatments for Batch 1. All of these probes do NOT map to any known genes**. The p-value histogram illustrates how few genes are identified as significant before any multiple test correction. This is concordant with the PCA for Batch1 where we saw the samples displayed no obvious clustering.
```{r, fig.align='center'}
resultsb1 <- topTable(fit2b1.core, coef=1, number=nrow(exprs(affyNorm.core.b1)))
df <- cbind(resultsb1[,c('P.Value', 'logFC')])
ggplot(df) +
geom_histogram(aes(x=P.Value)) +
theme_bw() +
xlab('p-value')
```
#### Volcano plot
This is a type of scatter-plot that is used to quickly identify changes in large datasets composed of replicate data. It plots significance versus fold-change on the y- and x-axes, respectively. The **points in purple are genes that have an FDR < 0.05.** The fold changes are higher than those seen with the full dataset.
```{r, fig.align='center'}
df <- cbind(resultsb1[,c('adj.P.Val','P.Value', 'logFC')])
df <- cbind(df, threshold=as.logical(df$adj.P.Val < 0.05))
ggplot(data=df, aes(x=logFC, y=-log10(P.Value), colour=threshold)) +
scale_color_manual(values = c("grey", "purple")) +
geom_point(alpha=0.75, pch=16, size=2) +
theme(legend.position = "none",
plot.title = element_text(size = rel(1.5)),
axis.title = element_text(size = rel(1.5)),
axis.text = element_text(size = rel(1.25))) +
xlab("log2 fold change") + ylab("-log10 p-value")
```
### Batch 2
**At an FDR < 0.05 there are 27 probes differentially expressed between treatments for Batch 2. All but two of these probes do NOT map to any known genes**. The p-value distribution for Batch 2 demonstrates a larger number of significant p-values.
```{r, fig.align='center'}
resultsb2 <- topTable(fit2b2.core, coef=1, number=nrow(exprs(affyNorm.core.b2)))
df <- cbind(resultsb2[,c('adj.P.Val','P.Value', 'logFC')])
ggplot(df) +
geom_histogram(aes(x=P.Value)) +
theme_bw() +
xlab('p-value')
```
#### Volcano plot
```{r}
df <- cbind(df, threshold=as.logical(df$adj.P.Val < 0.05))
ggplot(data=df, aes(x=logFC, y=-log10(P.Value), colour=threshold)) +
scale_color_manual(values = c("grey", "purple")) +
geom_point(alpha=0.75, pch=16, size=2) +
theme(legend.position = "none",
plot.title = element_text(size = rel(1.5)),
axis.title = element_text(size = rel(1.5)),
axis.text = element_text(size = rel(1.25))) +
xlab("log2 fold change") + ylab("-log10 p-value")
```
## Filter Probesets
Reducing the number of genes assayed reduces the multiple test correction and may allow us to identify more differentially expressed genes.
Starting with `r nrow(fData(affyNorm.core.b1))` probes in Batch 1 and `r nrow(fData(affyNorm.core.b2))` probes in Batch 2 remaining we can filter:
### By Annotation
- remove the probes without annotated genes
```{r filter1}
affyNorm.filt.b1 <- affyNorm.core.b1[which(!is.na(fData(affyNorm.core.b1)$symbol) & fData(affyNorm.core.b1)$category=="main"),]
affyNorm.filt.b2 <- affyNorm.core.b2[which(!is.na(fData(affyNorm.core.b2)$symbol) & fData(affyNorm.core.b2)$category=="main"),]
```
`r nrow(fData(affyNorm.filt.b1))` probes remaining in Batch 1
`r nrow(fData(affyNorm.filt.b2))` probes remaining in Batch 2
### By Low Expression Level
- remove probes with low expression levels (bottom `r lowintensity.percentile*100`% of all expression levels) in all samples
```{r filter3, cache=TRUE}
eset.core <- exprs(affyNorm.filt.b1)
affyNorm.filt.b1 <- affyNorm.filt.b1[!(apply(eset.core, 1,
function(x) all(x<quantile(exprs(affyNorm.filt.b1), 0.1)))),]
eset.core <- exprs(affyNorm.filt.b2)
affyNorm.filt.b2 <- affyNorm.filt.b2[!(apply(eset.core, 1,
function(x) all(x<quantile(exprs(affyNorm.filt.b2), 0.1)))),]
```
`r nrow(fData(affyNorm.filt.b1))` probes remaining for Batch 1
`r nrow(fData(affyNorm.filt.b2))` probes remaining for Batch 2
### By Low Variability
- remove probes with lower variation among all samples (without regard for group status) (dropped the bottom `r mad.quantile.cutoff*100`%)
```{r filter4}
# Batch 1
eset.core <- exprs(affyNorm.filt.b1)
rowmads <- apply(eset.core, 1, mad)
mad.cutoff <- as.numeric(quantile(rowmads, mad.quantile.cutoff))
affyNorm.filt.b1 <- affyNorm.filt.b1[rowmads>mad.cutoff,]
# Batch 2
eset.core <- exprs(affyNorm.filt.b2)
rowmads <- apply(eset.core, 1, mad)
mad.cutoff <- as.numeric(quantile(rowmads, mad.quantile.cutoff))
affyNorm.filt.b2<- affyNorm.filt.b2[rowmads>mad.cutoff,]
```
`r nrow(fData(affyNorm.filt.b1))` probes remaining for Batch 1
`r nrow(fData(affyNorm.filt.b2))` probes remaining for Batch 2
### Linear model: Post-filtering
We will apply the same model fits to the reduced data matrix, after having applied several filters.
```{r}
# Fit model for BATCH 1
fit.core <- lmFit(affyNorm.filt.b1, design.b1)
fit2b1.core <- contrasts.fit(fit.core, contrast.b1)
fit2b1.core <- eBayes(fit2b1.core)
# Fit model for BATCH 2
fit.core <- lmFit(affyNorm.filt.b2, design.b2)
fit2b2.core <- contrasts.fit(fit.core, contrast.b2)# Bayes shrinkage
fit2b2.core <- eBayes(fit2b2.core)
```
### Volcano plots post-filtering
We now find that with **Batch 1 there are zero probes being differentially expressed**. In contrast, we now observe **many more genes being differentially expressed with Batch 2 (652 probes).**
**However, in both cases, we see a very unusual volcano plot. There is an oddly perfect relationship between logFC and p-value, which cannot be explained!!**
#### Batch 1
```{r}
resultsb1.filt <- topTable(fit2b1.core, coef=1, number=nrow(exprs(affyNorm.filt.b1)))
df <- cbind(resultsb1.filt[,c('adj.P.Val','P.Value', 'logFC')])
df <- cbind(df, threshold=as.logical(df$adj.P.Val < 0.05))
ggplot(data=df, aes(x=logFC, y=-log10(P.Value), colour=threshold)) +
scale_color_manual(values = c("grey", "purple")) +
geom_point(alpha=0.75, pch=16, size=2) +
theme(legend.position = "none",
plot.title = element_text(size = rel(1.5)),
axis.title = element_text(size = rel(1.5)),
axis.text = element_text(size = rel(1.25))) +
xlab("log2 fold change") + ylab("-log10 p-value")
```
#### Batch 2
```{r}
resultsb2.filt <- topTable(fit2b2.core, coef=1, number=nrow(exprs(affyNorm.filt.b2)))
df <- cbind(resultsb2.filt[,c('adj.P.Val','P.Value', 'logFC')])
df <- cbind(df, threshold=as.logical(df$adj.P.Val < 0.05))
ggplot(data=df, aes(x=logFC, y=-log10(P.Value), colour=threshold)) +
scale_color_manual(values = c("grey", "purple")) +
geom_point(alpha=0.75, pch=16, size=2) +
theme(legend.position = "none",
plot.title = element_text(size = rel(1.5)),
axis.title = element_text(size = rel(1.5)),
axis.text = element_text(size = rel(1.25))) +
xlab("log2 fold change") + ylab("-log10 p-value")
```
The **results table for this within batch re-analysis can be downloaded using the links below**. *Note that for all these files, values are not summarized for genes assayed by multiple probes (i.e. by taking the median value), so you may see multiple instances of the same gene in the results*
```{r write-table, echo=FALSE, eval=FALSE}
stats <- topTable(fit2b1.core, coef=1, sort.by="P",adjust.method="BH",number=nrow(exprs(affyNorm.filt.b1)),
genelist=fData(affyNorm.filt.b1)[,c("symbol", "entrezID", "mrnaassignment")])
stats$Passes.FDR.threshold <- as.factor(stats$adj.P.Val<pvalue.cutoff)
eset <- exprs(affyNorm.filt.b1)
eset <- eset[match(row.names(stats), row.names(eset)),]
stats.eset <- cbind(stats, eset)
write.table(stats.eset, file="results_new/allGenes_Batch1_stats_exprs_Analysis2.xls", sep="\t", quote=F, col.names=NA)
```
* [125D3 treatment results BATCH 1](results_new/allGenes_Batch1_stats_exprs_Analysis2.xls)
* [125D3 treatment results BATCH 2](results_new/allGenes_Batch2_stats_exprs_Analysis2.xls)
**The summary table above contains the following information:**
- logFC is the log2-fold change
- the AveExpr is the average expression value accross all arrays
- the moderated t-statistic (t) is the logFC to its standard error, the P.Value is the associated p-value
- the adj.P.Value is the p-value adjusted for multiple testing (by FDR)
- the B-value (B) is the log-odds that a gene is differentially expressed (the-higher-the-better)
- the last 4 columns contain the log-transformed normalized expression levels for these genes in each sample
## Aggregate probesets
For any gene that has multiple probe mappings, aggregate expression data by taking a mean across all probes. We will be left with two gene level expression matrices; one for each Batch.
```{r aggregate-batch1, echo=TRUE}
df <- data.frame(exprs(affyNorm.filt.b1))
symbol <- fData(affyNorm.filt.b1)$symbol
df <- cbind(df, symbol)
# Average by Gene Symbol
genemeans <- aggregate(. ~ symbol, data=df, mean)
row.names(genemeans) <- genemeans$symbol
genemeans <- as.matrix(genemeans[,-1])
colnames(genemeans) <- colnames(exprs(affyNorm.filt.b1))
# Create new expression set object
affyNorm.gene.b1 <- ExpressionSet(genemeans)
pData(affyNorm.gene.b1) <- pData(affyNorm.filt.b1)
```
`r nrow(exprs(affyNorm.gene.b1))` unique genes in **Batch 1** for differential expression analysis.
```{r aggregate-batch2, echo=TRUE}
df <- data.frame(exprs(affyNorm.filt.b2 ))
symbol <- fData(affyNorm.filt.b2)$symbol
df <- cbind(df, symbol)
# Average by Gene Symbol
genemeans <- aggregate(. ~ symbol, data=df, mean)
row.names(genemeans) <- genemeans$symbol
genemeans <- as.matrix(genemeans[,-1])
colnames(genemeans) <- colnames(exprs(affyNorm.filt.b2))
# Create new expression set object
affyNorm.gene.b2 <- ExpressionSet(genemeans)
pData(affyNorm.gene.b2) <- pData(affyNorm.filt.b2)
```
`r nrow(exprs(affyNorm.gene.b2))` unique genes in **Batch 2** for differential expression analysis.
### Linear model: Gene-level analysis
We will apply the same model fits to the gene-level data matrix, after having aggregated probes for a single gene mapping (by taking an average).
```{r, echo=TRUE}
# Fit model for BATCH 1
fit.core <- lmFit(affyNorm.gene.b1, design.b1)
fit2b1.core <- contrasts.fit(fit.core, contrast.b1)
fit2b1.core <- eBayes(fit2b1.core)
# Fit model for BATCH 2
fit.core <- lmFit(affyNorm.gene.b2, design.b2)
fit2b2.core <- contrasts.fit(fit.core, contrast.b2)# Bayes shrinkage
fit2b2.core <- eBayes(fit2b2.core)
```
### Results
For the gene-level analysis we expect to find fewer significant findings as the probes were collapsed down. **For Batch 2 there are 407 significant genes idenitified.**
```{r}
# Get results
resultsb1.gene <- topTable(fit2b1.core, coef=1, number=nrow(exprs(affyNorm.gene.b1)))
resultsb2.gene <- topTable(fit2b2.core, coef=1, number=nrow(exprs(affyNorm.gene.b2)))
```
The **results table for this gene-level within batch re-analysis can be downloaded using the links below**.
* [125D3 treatment gene-level results BATCH 1](./results_new/uniqueGenes_Batch1_stats_exprs_Analysis2.xls)
* [125D3 treatment gene-level results BATCH 2](./results_new/uniqueGenes_Batch2_stats_exprs_Analysis2.xls)
```{r write-table-gene, echo=FALSE, eval=FALSE}
stats <- topTable(fit2b2.core, coef=1, sort.by="P",adjust.method="BH",number=nrow(exprs(affyNorm.gene.b2)))
stats$Passes.FDR.threshold <- as.factor(stats$adj.P.Val<pvalue.cutoff)
eset <- exprs(affyNorm.gene.b2)
eset <- eset[match(row.names(stats), row.names(eset)),]
stats.eset <- cbind(stats, eset)
write.table(stats.eset, file="results_new/uniqueGenes_Batch2_stats_exprs_Analysis1.xls", sep="\t", quote=F, col.names=NA)
```
---
# R Session Info
(useful if replicating these results)
```{r sessioninfo}
sessionInfo()
```
---
# References
```{r writebib, results='hide', echo=FALSE, message=FALSE}
write.bibtex(file="references.bib")
```