diff --git a/README.md b/README.md index fe1d0a990d1176..fc87eccf85019d 100644 --- a/README.md +++ b/README.md @@ -303,7 +303,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h 1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning. 1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. 1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu. -1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. +1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. 1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei 1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab. 1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela. @@ -343,6 +343,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h 1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. 1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. +1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. 1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari. 1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. 1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. diff --git a/README_es.md b/README_es.md index 2d4028ff91e923..87762a53bcf10b 100644 --- a/README_es.md +++ b/README_es.md @@ -343,6 +343,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt 1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. 1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. +1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. 1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari. 1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. 1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. diff --git a/README_ja.md b/README_ja.md index 9627b9fb1546de..87612657ccc065 100644 --- a/README_ja.md +++ b/README_ja.md @@ -378,6 +378,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ 1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. 1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. +1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. 1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari. 1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. 1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. diff --git a/README_ko.md b/README_ko.md index e01f05a28b66c1..5db98748ea768e 100644 --- a/README_ko.md +++ b/README_ko.md @@ -254,7 +254,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. 1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu. 1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. -1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei 1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab. 1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela. 1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. @@ -293,6 +293,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. 1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. +1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. 1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari. 1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. 1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. diff --git a/README_zh-hans.md b/README_zh-hans.md index 36860c9598d486..29226db493a1c3 100644 --- a/README_zh-hans.md +++ b/README_zh-hans.md @@ -278,7 +278,7 @@ conda install -c huggingface transformers 1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (来自 Google Research) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。 1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (来自 Baidu) 伴随论文 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 发布。 1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. -1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei 1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。 1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (来自 Facebook AI) 伴随论文 [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) 由 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela 发布。 1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。 @@ -317,6 +317,7 @@ conda install -c huggingface transformers 1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。 1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (来自 Studio Ousia) 伴随论文 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 由 Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 发布。 1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (来自 CMU/Google Brain) 伴随论文 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 由 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 发布。 +1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (来自 Google Inc.) 伴随论文 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 由 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 发布。 1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (来自 Apple) 伴随论文 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 由 Sachin Mehta and Mohammad Rastegari 发布。 1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (来自 Microsoft Research) 伴随论文 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 由 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 发布。 1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (来自 Google AI) 伴随论文 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 由 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 发布。 diff --git a/README_zh-hant.md b/README_zh-hant.md index d5a965f5b9167b..e0979e08bc5117 100644 --- a/README_zh-hant.md +++ b/README_zh-hant.md @@ -290,7 +290,7 @@ conda install -c huggingface transformers 1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. 1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu. 1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. -1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei +1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei 1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab. 1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela. 1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. @@ -329,6 +329,7 @@ conda install -c huggingface transformers 1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. 1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. +1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. 1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari. 1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. 1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. diff --git a/docs/source/en/_toctree.yml b/docs/source/en/_toctree.yml index 814a570d88976d..84dd80497d3796 100644 --- a/docs/source/en/_toctree.yml +++ b/docs/source/en/_toctree.yml @@ -406,6 +406,8 @@ title: LeViT - local: model_doc/maskformer title: MaskFormer + - local: model_doc/mobilenet_v2 + title: MobileNetV2 - local: model_doc/mobilevit title: MobileViT - local: model_doc/poolformer diff --git a/docs/source/en/index.mdx b/docs/source/en/index.mdx index fa6ecbfc3bf2c4..8776bccd63dc53 100644 --- a/docs/source/en/index.mdx +++ b/docs/source/en/index.mdx @@ -91,7 +91,7 @@ The documentation is organized into five sections: 1. **[ELECTRA](model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning. 1. **[EncoderDecoder](model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. 1. **[ERNIE](model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu. -1. **[ESM](model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. +1. **[ESM](model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. 1. **[FLAN-T5](model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei 1. **[FlauBERT](model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab. 1. **[FLAVA](model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela. @@ -131,6 +131,7 @@ The documentation is organized into five sections: 1. **[Megatron-GPT2](model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[mLUKE](model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. 1. **[MobileBERT](model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. +1. **[MobileNetV2](model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. 1. **[MobileViT](model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari. 1. **[MPNet](model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. 1. **[MT5](model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. @@ -283,6 +284,7 @@ Flax), PyTorch, and/or TensorFlow. | mBART | ✅ | ✅ | ✅ | ✅ | ✅ | | Megatron-BERT | ❌ | ❌ | ✅ | ❌ | ❌ | | MobileBERT | ✅ | ✅ | ✅ | ✅ | ❌ | +| MobileNetV2 | ❌ | ❌ | ✅ | ❌ | ❌ | | MobileViT | ❌ | ❌ | ✅ | ✅ | ❌ | | MPNet | ✅ | ✅ | ✅ | ✅ | ❌ | | MT5 | ✅ | ✅ | ✅ | ✅ | ✅ | diff --git a/docs/source/en/model_doc/mobilenet_v2.mdx b/docs/source/en/model_doc/mobilenet_v2.mdx new file mode 100644 index 00000000000000..ce3e19aea309db --- /dev/null +++ b/docs/source/en/model_doc/mobilenet_v2.mdx @@ -0,0 +1,80 @@ + + +# MobileNet V2 + +## Overview + +The MobileNet model was proposed in [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. + +The abstract from the paper is the following: + +*In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3.* + +*The MobileNetV2 architecture is based on an inverted residual structure where the input and output of the residual block are thin bottleneck layers opposite to traditional residual models which use expanded representations in the input an MobileNetV2 uses lightweight depthwise convolutions to filter features in the intermediate expansion layer. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on Imagenet classification, COCO object detection, VOC image segmentation. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as the number of parameters.* + +Tips: + +- The checkpoints are named **mobilenet\_v2\_*depth*\_*size***, for example **mobilenet\_v2\_1.0\_224**, where **1.0** is the depth multiplier (sometimes also referred to as "alpha" or the width multiplier) and **224** is the resolution of the input images the model was trained on. + +- Even though the checkpoint is trained on images of specific size, the model will work on images of any size. The smallest supported image size is 32x32. + +- One can use [`MobileNetV2FeatureExtractor`] to prepare images for the model. + +- The available image classification checkpoints are pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k) (also referred to as ILSVRC 2012, a collection of 1.3 million images and 1,000 classes). However, the model predicts 1001 classes: the 1000 classes from ImageNet plus an extra “background” class (index 0). + +- The segmentation model uses a [DeepLabV3+](https://arxiv.org/abs/1802.02611) head. The available semantic segmentation checkpoints are pre-trained on [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/). + +- The original TensorFlow checkpoints use different padding rules than PyTorch, requiring the model to determine the padding amount at inference time, since this depends on the input image size. To use native PyTorch padding behavior, create a [`MobileNetV2Config`] with `tf_padding = False`. + +Unsupported features: + +- The [`MobileNetV2Model`] outputs a globally pooled version of the last hidden state. In the original model it is possible to use an average pooling layer with a fixed 7x7 window and stride 1 instead of global pooling. For inputs that are larger than the recommended image size, this gives a pooled output that is larger than 1x1. The Hugging Face implementation does not support this. + +- The original TensorFlow checkpoints include quantized models. We do not support these models as they include additional "FakeQuantization" operations to unquantize the weights. + +- It's common to extract the output from the expansion layers at indices 10 and 13, as well as the output from the final 1x1 convolution layer, for downstream purposes. Using `output_hidden_states=True` returns the output from all intermediate layers. There is currently no way to limit this to specific layers. + +- The DeepLabV3+ segmentation head does not use the final convolution layer from the backbone, but this layer gets computed anyway. There is currently no way to tell [`MobileNetV2Model`] up to which layer it should run. + +This model was contributed by [matthijs](https://huggingface.co/Matthijs). The original code and weights can be found [here for the main model](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet) and [here for DeepLabV3+](https://github.com/tensorflow/models/tree/master/research/deeplab). + +## MobileNetV2Config + +[[autodoc]] MobileNetV2Config + +## MobileNetV2FeatureExtractor + +[[autodoc]] MobileNetV2FeatureExtractor + - preprocess + - post_process_semantic_segmentation + +## MobileNetV2ImageProcessor + +[[autodoc]] MobileNetV2ImageProcessor + - preprocess + - post_process_semantic_segmentation + +## MobileNetV2Model + +[[autodoc]] MobileNetV2Model + - forward + +## MobileNetV2ForImageClassification + +[[autodoc]] MobileNetV2ForImageClassification + - forward + +## MobileNetV2ForSemanticSegmentation + +[[autodoc]] MobileNetV2ForSemanticSegmentation + - forward diff --git a/docs/source/en/serialization.mdx b/docs/source/en/serialization.mdx index f18c434a6f6512..68997efe31f51e 100644 --- a/docs/source/en/serialization.mdx +++ b/docs/source/en/serialization.mdx @@ -84,6 +84,7 @@ Ready-made configurations include the following architectures: - Marian - mBART - MobileBERT +- MobileNetV2 - MobileViT - MT5 - OpenAI GPT-2 diff --git a/src/transformers/__init__.py b/src/transformers/__init__.py index 28246e1ca03038..f21edfc902a727 100644 --- a/src/transformers/__init__.py +++ b/src/transformers/__init__.py @@ -299,6 +299,7 @@ "models.mluke": [], "models.mmbt": ["MMBTConfig"], "models.mobilebert": ["MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertTokenizer"], + "models.mobilenet_v2": ["MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileNetV2Config"], "models.mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig"], "models.mpnet": ["MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "MPNetConfig", "MPNetTokenizer"], "models.mt5": ["MT5Config"], @@ -726,6 +727,7 @@ _import_structure["models.layoutlmv3"].extend(["LayoutLMv3FeatureExtractor", "LayoutLMv3ImageProcessor"]) _import_structure["models.levit"].extend(["LevitFeatureExtractor", "LevitImageProcessor"]) _import_structure["models.maskformer"].append("MaskFormerFeatureExtractor") + _import_structure["models.mobilenet_v2"].extend(["MobileNetV2FeatureExtractor", "MobileNetV2ImageProcessor"]) _import_structure["models.mobilevit"].extend(["MobileViTFeatureExtractor", "MobileViTImageProcessor"]) _import_structure["models.owlvit"].append("OwlViTFeatureExtractor") _import_structure["models.perceiver"].extend(["PerceiverFeatureExtractor", "PerceiverImageProcessor"]) @@ -1674,6 +1676,16 @@ "load_tf_weights_in_mobilebert", ] ) + _import_structure["models.mobilenet_v2"].extend( + [ + "MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST", + "MobileNetV2ForImageClassification", + "MobileNetV2ForSemanticSegmentation", + "MobileNetV2Model", + "MobileNetV2PreTrainedModel", + "load_tf_weights_in_mobilenet_v2", + ] + ) _import_structure["models.mobilevit"].extend( [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", @@ -3416,6 +3428,7 @@ from .models.megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig from .models.mmbt import MMBTConfig from .models.mobilebert import MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertTokenizer + from .models.mobilenet_v2 import MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetV2Config from .models.mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig from .models.mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig, MPNetTokenizer from .models.mt5 import MT5Config @@ -3787,6 +3800,7 @@ from .models.layoutlmv3 import LayoutLMv3FeatureExtractor, LayoutLMv3ImageProcessor from .models.levit import LevitFeatureExtractor, LevitImageProcessor from .models.maskformer import MaskFormerFeatureExtractor + from .models.mobilenet_v2 import MobileNetV2FeatureExtractor, MobileNetV2ImageProcessor from .models.mobilevit import MobileViTFeatureExtractor, MobileViTImageProcessor from .models.owlvit import OwlViTFeatureExtractor from .models.perceiver import PerceiverFeatureExtractor, PerceiverImageProcessor @@ -4535,6 +4549,14 @@ MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) + from .models.mobilenet_v2 import ( + MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, + MobileNetV2ForImageClassification, + MobileNetV2ForSemanticSegmentation, + MobileNetV2Model, + MobileNetV2PreTrainedModel, + load_tf_weights_in_mobilenet_v2, + ) from .models.mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, diff --git a/src/transformers/activations.py b/src/transformers/activations.py index 021596245ea3f2..d9caf8763e4598 100644 --- a/src/transformers/activations.py +++ b/src/transformers/activations.py @@ -159,6 +159,7 @@ def __getitem__(self, key): "mish": MishActivation, "quick_gelu": QuickGELUActivation, "relu": nn.ReLU, + "relu6": nn.ReLU6, "sigmoid": nn.Sigmoid, "silu": SiLUActivation, "swish": SiLUActivation, diff --git a/src/transformers/models/__init__.py b/src/transformers/models/__init__.py index a325e95c110144..77d2b71c50d681 100644 --- a/src/transformers/models/__init__.py +++ b/src/transformers/models/__init__.py @@ -102,6 +102,7 @@ mluke, mmbt, mobilebert, + mobilenet_v2, mobilevit, mpnet, mt5, diff --git a/src/transformers/models/auto/configuration_auto.py b/src/transformers/models/auto/configuration_auto.py index 68f6bdc7d54d52..b3c80b9c10fc09 100644 --- a/src/transformers/models/auto/configuration_auto.py +++ b/src/transformers/models/auto/configuration_auto.py @@ -100,6 +100,7 @@ ("mctct", "MCTCTConfig"), ("megatron-bert", "MegatronBertConfig"), ("mobilebert", "MobileBertConfig"), + ("mobilenet_v2", "MobileNetV2Config"), ("mobilevit", "MobileViTConfig"), ("mpnet", "MPNetConfig"), ("mt5", "MT5Config"), @@ -239,6 +240,7 @@ ("mbart", "MBART_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mctct", "MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("megatron-bert", "MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), + ("mobilenet_v2", "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mobilevit", "MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mpnet", "MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mvp", "MVP_PRETRAINED_CONFIG_ARCHIVE_MAP"), @@ -388,6 +390,7 @@ ("megatron_gpt2", "Megatron-GPT2"), ("mluke", "mLUKE"), ("mobilebert", "MobileBERT"), + ("mobilenet_v2", "MobileNetV2"), ("mobilevit", "MobileViT"), ("mpnet", "MPNet"), ("mt5", "MT5"), diff --git a/src/transformers/models/auto/feature_extraction_auto.py b/src/transformers/models/auto/feature_extraction_auto.py index bc30cc21b60d0f..7eff2c2837e7f2 100644 --- a/src/transformers/models/auto/feature_extraction_auto.py +++ b/src/transformers/models/auto/feature_extraction_auto.py @@ -60,6 +60,7 @@ ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), + ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), diff --git a/src/transformers/models/auto/image_processing_auto.py b/src/transformers/models/auto/image_processing_auto.py index 776be931365d4d..72492f4cab721d 100644 --- a/src/transformers/models/auto/image_processing_auto.py +++ b/src/transformers/models/auto/image_processing_auto.py @@ -51,6 +51,7 @@ ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), + ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), diff --git a/src/transformers/models/auto/modeling_auto.py b/src/transformers/models/auto/modeling_auto.py index caaaeeeb22c5e8..e5c5a5739cba45 100644 --- a/src/transformers/models/auto/modeling_auto.py +++ b/src/transformers/models/auto/modeling_auto.py @@ -99,6 +99,7 @@ ("mctct", "MCTCTModel"), ("megatron-bert", "MegatronBertModel"), ("mobilebert", "MobileBertModel"), + ("mobilenet_v2", "MobileNetV2Model"), ("mobilevit", "MobileViTModel"), ("mpnet", "MPNetModel"), ("mt5", "MT5Model"), @@ -365,6 +366,7 @@ ("deit", ("DeiTForImageClassification", "DeiTForImageClassificationWithTeacher")), ("imagegpt", "ImageGPTForImageClassification"), ("levit", ("LevitForImageClassification", "LevitForImageClassificationWithTeacher")), + ("mobilenet_v2", "MobileNetV2ForImageClassification"), ("mobilevit", "MobileViTForImageClassification"), ( "perceiver", @@ -400,6 +402,7 @@ ("beit", "BeitForSemanticSegmentation"), ("data2vec-vision", "Data2VecVisionForSemanticSegmentation"), ("dpt", "DPTForSemanticSegmentation"), + ("mobilenet_v2", "MobileNetV2ForSemanticSegmentation"), ("mobilevit", "MobileViTForSemanticSegmentation"), ("segformer", "SegformerForSemanticSegmentation"), ] diff --git a/src/transformers/models/mobilenet_v2/__init__.py b/src/transformers/models/mobilenet_v2/__init__.py new file mode 100644 index 00000000000000..eafb8c1d78090c --- /dev/null +++ b/src/transformers/models/mobilenet_v2/__init__.py @@ -0,0 +1,92 @@ +# flake8: noqa +# There's no way to ignore "F401 '...' imported but unused" warnings in this +# module, but to preserve other warnings. So, don't check this module at all. + +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available + + +_import_structure = { + "configuration_mobilenet_v2": [ + "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", + "MobileNetV2Config", + "MobileNetV2OnnxConfig", + ], +} + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["feature_extraction_mobilenet_v2"] = ["MobileNetV2FeatureExtractor"] + _import_structure["image_processing_mobilenet_v2"] = ["MobileNetV2ImageProcessor"] + + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_mobilenet_v2"] = [ + "MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST", + "MobileNetV2ForImageClassification", + "MobileNetV2ForSemanticSegmentation", + "MobileNetV2Model", + "MobileNetV2PreTrainedModel", + "load_tf_weights_in_mobilenet_v2", + ] + + +if TYPE_CHECKING: + from .configuration_mobilenet_v2 import ( + MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, + MobileNetV2Config, + MobileNetV2OnnxConfig, + ) + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .feature_extraction_mobilenet_v2 import MobileNetV2FeatureExtractor + from .image_processing_mobilenet_v2 import MobileNetV2ImageProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_mobilenet_v2 import ( + MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, + MobileNetV2ForImageClassification, + MobileNetV2ForSemanticSegmentation, + MobileNetV2Model, + MobileNetV2PreTrainedModel, + load_tf_weights_in_mobilenet_v2, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/src/transformers/models/mobilenet_v2/configuration_mobilenet_v2.py b/src/transformers/models/mobilenet_v2/configuration_mobilenet_v2.py new file mode 100644 index 00000000000000..d802556e1fff6b --- /dev/null +++ b/src/transformers/models/mobilenet_v2/configuration_mobilenet_v2.py @@ -0,0 +1,159 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" MobileNetV2 model configuration""" + +from collections import OrderedDict +from typing import Mapping + +from packaging import version + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "google/mobilenet_v2_1.4_224": "https://huggingface.co/Matthijs/mobilenet_v2_1.4_224/resolve/main/config.json", + "google/mobilenet_v2_1.0_224": "https://huggingface.co/Matthijs/mobilenet_v2_1.0_224/resolve/main/config.json", + "google/mobilenet_v2_0.75_160": "https://huggingface.co/Matthijs/mobilenet_v2_0.75_160/resolve/main/config.json", + "google/mobilenet_v2_0.35_96": "https://huggingface.co/Matthijs/mobilenet_v2_0.35_96/resolve/main/config.json", + # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 +} + + +class MobileNetV2Config(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`MobileNetV2Model`]. It is used to instantiate a + MobileNetV2 model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the MobileNetV2 + [Matthijs/mobilenet_v2_1.0_224](https://huggingface.co/Matthijs/mobilenet_v2_1.0_224) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + depth_multiplier (`float`, *optional*, defaults to 1.0): + Shrinks or expands the number of channels in each layer. Default is 1.0, which starts the network with 32 + channels. This is sometimes also called "alpha" or "width multiplier". + depth_divisible_by (`int`, *optional*, defaults to 8): + The number of channels in each layer will always be a multiple of this number. + min_depth (`int`, *optional*, defaults to 8): + All layers will have at least this many channels. + expand_ratio (`float`, *optional*, defaults to 6.0): + The number of output channels of the first layer in each block is input channels times expansion ratio. + output_stride (`int`, *optional*, defaults to 32): + The ratio between the spatial resolution of the input and output feature maps. By default the model reduces + the input dimensions by a factor of 32. If `output_stride` is 8 or 16, the model uses dilated convolutions + on the depthwise layers instead of regular convolutions, so that the feature maps never become more than 8x + or 16x smaller than the input image. + first_layer_is_expansion (`bool`, `optional`, defaults to `True`): + True if the very first convolution layer is also the expansion layer for the first expansion block. + finegrained_output (`bool`, `optional`, defaults to `True`): + If true, the number of output channels in the final convolution layer will stay large (1280) even if + `depth_multiplier` is less than 1. + hidden_act (`str` or `function`, *optional*, defaults to `"relu6"`): + The non-linear activation function (function or string) in the Transformer encoder and convolution layers. + tf_padding (`bool`, `optional`, defaults to `True`): + Whether to use TensorFlow padding rules on the convolution layers. + classifier_dropout_prob (`float`, *optional*, defaults to 0.999): + The dropout ratio for attached classifiers. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 0.001): + The epsilon used by the layer normalization layers. + semantic_loss_ignore_index (`int`, *optional*, defaults to 255): + The index that is ignored by the loss function of the semantic segmentation model. + + Example: + + ```python + >>> from transformers import MobileNetV2Config, MobileNetV2Model + + >>> # Initializing a "mobilenet_v2_1.0_224" style configuration + >>> configuration = MobileNetV2Config() + + >>> # Initializing a model from the "mobilenet_v2_1.0_224" style configuration + >>> model = MobileNetV2Model(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + model_type = "mobilenet_v2" + + def __init__( + self, + num_channels=3, + image_size=224, + depth_multiplier=1.0, + depth_divisible_by=8, + min_depth=8, + expand_ratio=6, + output_stride=32, + first_layer_is_expansion=True, + finegrained_output=True, + hidden_act="relu6", + tf_padding=True, + classifier_dropout_prob=0.8, + initializer_range=0.02, + layer_norm_eps=0.001, + semantic_loss_ignore_index=255, + **kwargs + ): + super().__init__(**kwargs) + + if depth_multiplier <= 0: + raise ValueError("depth_multiplier must be greater than zero.") + + self.num_channels = num_channels + self.image_size = image_size + self.depth_multiplier = depth_multiplier + self.depth_divisible_by = depth_divisible_by + self.min_depth = min_depth + self.expand_ratio = expand_ratio + self.output_stride = output_stride + self.first_layer_is_expansion = first_layer_is_expansion + self.finegrained_output = finegrained_output + self.hidden_act = hidden_act + self.tf_padding = tf_padding + self.classifier_dropout_prob = classifier_dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.semantic_loss_ignore_index = semantic_loss_ignore_index + + +class MobileNetV2OnnxConfig(OnnxConfig): + + torch_onnx_minimum_version = version.parse("1.11") + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict([("pixel_values", {0: "batch"})]) + + @property + def outputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "image-classification": + return OrderedDict([("logits", {0: "batch"})]) + else: + return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})]) + + @property + def atol_for_validation(self) -> float: + return 1e-4 diff --git a/src/transformers/models/mobilenet_v2/convert_original_tf_checkpoint_to_pytorch.py b/src/transformers/models/mobilenet_v2/convert_original_tf_checkpoint_to_pytorch.py new file mode 100644 index 00000000000000..70a00d7d23392e --- /dev/null +++ b/src/transformers/models/mobilenet_v2/convert_original_tf_checkpoint_to_pytorch.py @@ -0,0 +1,178 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert MobileNetV2 checkpoints from the tensorflow/models library.""" + + +import argparse +import json +import re +from pathlib import Path + +import torch +from PIL import Image + +import requests +from huggingface_hub import hf_hub_download +from transformers import ( + MobileNetV2Config, + MobileNetV2ForImageClassification, + MobileNetV2ForSemanticSegmentation, + MobileNetV2ImageProcessor, + load_tf_weights_in_mobilenet_v2, +) +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +def get_mobilenet_v2_config(model_name): + config = MobileNetV2Config(layer_norm_eps=0.001) + + if "quant" in model_name: + raise ValueError("Quantized models are not supported.") + + matches = re.match(r"^.*mobilenet_v2_([^_]*)_([^_]*)$", model_name) + if matches: + config.depth_multiplier = float(matches[1]) + config.image_size = int(matches[2]) + + if model_name.startswith("deeplabv3_"): + config.output_stride = 8 + config.num_labels = 21 + filename = "pascal-voc-id2label.json" + else: + # The TensorFlow version of MobileNetV2 predicts 1001 classes instead + # of the usual 1000. The first class (index 0) is "background". + config.num_labels = 1001 + filename = "imagenet-1k-id2label.json" + + repo_id = "huggingface/label-files" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + + if config.num_labels == 1001: + id2label = {int(k) + 1: v for k, v in id2label.items()} + id2label[0] = "background" + else: + id2label = {int(k): v for k, v in id2label.items()} + + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + + return config + + +# We will verify our results on an image of cute cats +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + im = Image.open(requests.get(url, stream=True).raw) + return im + + +@torch.no_grad() +def convert_movilevit_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub=False): + """ + Copy/paste/tweak model's weights to our MobileNetV2 structure. + """ + config = get_mobilenet_v2_config(model_name) + + # Load 🤗 model + if model_name.startswith("deeplabv3_"): + model = MobileNetV2ForSemanticSegmentation(config).eval() + else: + model = MobileNetV2ForImageClassification(config).eval() + + # Load weights from TensorFlow checkpoint + load_tf_weights_in_mobilenet_v2(model, config, checkpoint_path) + + # Check outputs on an image, prepared by MobileNetV2ImageProcessor + feature_extractor = MobileNetV2ImageProcessor( + crop_size={"width": config.image_size, "height": config.image_size}, + size={"shortest_edge": config.image_size + 32}, + ) + encoding = feature_extractor(images=prepare_img(), return_tensors="pt") + outputs = model(**encoding) + logits = outputs.logits + + if model_name.startswith("deeplabv3_"): + assert logits.shape == (1, 21, 65, 65) + + if model_name == "deeplabv3_mobilenet_v2_1.0_513": + expected_logits = torch.tensor( + [ + [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], + [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], + [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], + ] + ) + + else: + raise ValueError(f"Unknown model name: {model_name}") + + assert torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-4) + else: + assert logits.shape == (1, 1001) + + if model_name == "mobilenet_v2_1.4_224": + expected_logits = torch.tensor([0.0181, -1.0015, 0.4688]) + elif model_name == "mobilenet_v2_1.0_224": + expected_logits = torch.tensor([0.2445, -1.1993, 0.1905]) + elif model_name == "mobilenet_v2_0.75_160": + expected_logits = torch.tensor([0.2482, 0.4136, 0.6669]) + elif model_name == "mobilenet_v2_0.35_96": + expected_logits = torch.tensor([0.1451, -0.4624, 0.7192]) + else: + expected_logits = None + + if expected_logits is not None: + assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4) + + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + print(f"Saving model {model_name} to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + print(f"Saving feature extractor to {pytorch_dump_folder_path}") + feature_extractor.save_pretrained(pytorch_dump_folder_path) + + if push_to_hub: + print("Pushing to the hub...") + repo_id = "google/" + model_name + feature_extractor.push_to_hub(repo_id) + model.push_to_hub(repo_id) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--model_name", + default="mobilenet_v2_1.0_224", + type=str, + help="Name of the MobileNetV2 model you'd like to convert. Should in the form 'mobilenet_v2__'.", + ) + parser.add_argument( + "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." + ) + parser.add_argument( + "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." + ) + parser.add_argument( + "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." + ) + + args = parser.parse_args() + convert_movilevit_checkpoint( + args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub + ) diff --git a/src/transformers/models/mobilenet_v2/feature_extraction_mobilenet_v2.py b/src/transformers/models/mobilenet_v2/feature_extraction_mobilenet_v2.py new file mode 100644 index 00000000000000..d334be9a3edf29 --- /dev/null +++ b/src/transformers/models/mobilenet_v2/feature_extraction_mobilenet_v2.py @@ -0,0 +1,24 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Feature extractor class for MobileNetV2.""" + +from ...utils import logging +from .image_processing_mobilenet_v2 import MobileNetV2ImageProcessor + + +logger = logging.get_logger(__name__) + + +MobileNetV2FeatureExtractor = MobileNetV2ImageProcessor diff --git a/src/transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py b/src/transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py new file mode 100644 index 00000000000000..5771be58547665 --- /dev/null +++ b/src/transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py @@ -0,0 +1,379 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for MobileNetV2.""" + +from typing import Dict, List, Optional, Tuple, Union + +import numpy as np + +from transformers.utils import is_torch_available, is_torch_tensor +from transformers.utils.generic import TensorType + +from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict +from ...image_transforms import ( + center_crop, + get_resize_output_image_size, + normalize, + rescale, + resize, + to_channel_dimension_format, +) +from ...image_utils import ( + IMAGENET_STANDARD_MEAN, + IMAGENET_STANDARD_STD, + ChannelDimension, + ImageInput, + PILImageResampling, + is_batched, + to_numpy_array, + valid_images, +) +from ...utils import logging + + +if is_torch_available(): + import torch + + +logger = logging.get_logger(__name__) + + +class MobileNetV2ImageProcessor(BaseImageProcessor): + r""" + Constructs a MobileNetV2 image processor. + + Args: + do_resize (`bool`, *optional*, defaults to `True`): + Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by + `do_resize` in the `preprocess` method. + size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 256}`): + Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with + the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` + method. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): + Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the + `preprocess` method. + do_center_crop (`bool`, *optional*, defaults to `True`): + Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image + is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the + `preprocess` method. + crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): + Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`. + Can be overridden by the `crop_size` parameter in the `preprocess` method. + do_rescale (`bool`, *optional*, defaults to `True`): + Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` + parameter in the `preprocess` method. + rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): + Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the + `preprocess` method. + do_normalize: + Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` + method. + image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): + Mean to use if normalizing the image. This is a float or list of floats the length of the number of + channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. + image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): + Standard deviation to use if normalizing the image. This is a float or list of floats the length of the + number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. + """ + + model_input_names = ["pixel_values"] + + def __init__( + self, + do_resize: bool = True, + size: Optional[Dict[str, int]] = None, + resample: PILImageResampling = PILImageResampling.BILINEAR, + do_center_crop: bool = True, + crop_size: Dict[str, int] = None, + do_rescale: bool = True, + rescale_factor: Union[int, float] = 1 / 255, + do_normalize: bool = True, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + **kwargs + ) -> None: + super().__init__(**kwargs) + size = size if size is not None else {"shortest_edge": 256} + size = get_size_dict(size, default_to_square=False) + crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} + crop_size = get_size_dict(crop_size) + self.do_resize = do_resize + self.size = size + self.resample = resample + self.do_center_crop = do_center_crop + self.crop_size = crop_size + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_normalize = do_normalize + self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN + self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD + + def resize( + self, + image: np.ndarray, + size: Dict[str, int], + resample: PILImageResampling = PILImageResampling.BICUBIC, + data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs + ) -> np.ndarray: + """ + Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge + resized to keep the input aspect ratio. + + Args: + image (`np.ndarray`): + Image to resize. + size (`Dict[str, int]`): + Size of the output image. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): + Resampling filter to use when resiizing the image. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the image. If not provided, it will be the same as the input image. + """ + size = get_size_dict(size, default_to_square=False) + if "shortest_edge" not in size: + raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") + output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False) + return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs) + + def center_crop( + self, + image: np.ndarray, + size: Dict[str, int], + data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs + ) -> np.ndarray: + """ + Center crop an image to (size["height"], size["width"]). If the input size is smaller than `size` along any + edge, the image is padded with 0's and then center cropped. + + Args: + image (`np.ndarray`): + Image to center crop. + size (`Dict[str, int]`): + Size of the output image. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the image. If not provided, it will be the same as the input image. + """ + size = get_size_dict(size) + return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs) + + def rescale( + self, image: np.ndarray, scale: float, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs + ) -> np.ndarray: + """ + Rescale an image by a scale factor. image = image * scale. + + Args: + image (`np.ndarray`): + Image to rescale. + scale (`float`): + The scaling factor to rescale pixel values by. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format for the output image. If unset, the channel dimension format of the input + image is used. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + + Returns: + `np.ndarray`: The rescaled image. + """ + return rescale(image, scale=scale, data_format=data_format, **kwargs) + + def normalize( + self, + image: np.ndarray, + mean: Union[float, List[float]], + std: Union[float, List[float]], + data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs + ) -> np.ndarray: + """ + Normalize an image. image = (image - image_mean) / image_std. + + Args: + image (`np.ndarray`): + Image to normalize. + mean (`float` or `List[float]`): + Image mean to use for normalization. + std (`float` or `List[float]`): + Image standard deviation to use for normalization. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format for the output image. If unset, the channel dimension format of the input + image is used. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + + Returns: + `np.ndarray`: The normalized image. + """ + return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs) + + def preprocess( + self, + images: ImageInput, + do_resize: Optional[bool] = None, + size: Dict[str, int] = None, + resample: PILImageResampling = None, + do_center_crop: bool = None, + crop_size: Dict[str, int] = None, + do_rescale: Optional[bool] = None, + rescale_factor: Optional[float] = None, + do_normalize: Optional[bool] = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, + **kwargs, + ): + """ + Preprocess an image or batch of images. + + Args: + images (`ImageInput`): + Image to preprocess. + do_resize (`bool`, *optional*, defaults to `self.do_resize`): + Whether to resize the image. + size (`Dict[str, int]`, *optional*, defaults to `self.size`): + Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with + the longest edge resized to keep the input aspect ratio. + resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`): + `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has + an effect if `do_resize` is set to `True`. + do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): + Whether to center crop the image. + crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): + Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. + do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): + Whether to rescale the image values between [0 - 1]. + rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): + Rescale factor to rescale the image by if `do_rescale` is set to `True`. + do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): + Image mean to use if `do_normalize` is set to `True`. + image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): + Image standard deviation to use if `do_normalize` is set to `True`. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - Unset: Use the channel dimension format of the input image. + """ + do_resize = do_resize if do_resize is not None else self.do_resize + size = size if size is not None else self.size + size = get_size_dict(size, default_to_square=False) + resample = resample if resample is not None else self.resample + do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop + crop_size = crop_size if crop_size is not None else self.crop_size + crop_size = get_size_dict(crop_size) + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + + if not is_batched(images): + images = [images] + + if not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + + if do_resize and size is None: + raise ValueError("Size must be specified if do_resize is True.") + + if do_center_crop and crop_size is None: + raise ValueError("Crop size must be specified if do_center_crop is True.") + + if do_rescale and rescale_factor is None: + raise ValueError("Rescale factor must be specified if do_rescale is True.") + + if do_normalize and (image_mean is None or image_std is None): + raise ValueError("Image mean and std must be specified if do_normalize is True.") + + # All transformations expect numpy arrays. + images = [to_numpy_array(image) for image in images] + + if do_resize: + images = [self.resize(image=image, size=size, resample=resample) for image in images] + + if do_center_crop: + images = [self.center_crop(image=image, size=crop_size) for image in images] + + if do_rescale: + images = [self.rescale(image=image, scale=rescale_factor) for image in images] + + if do_normalize: + images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images] + + images = [to_channel_dimension_format(image, data_format) for image in images] + + data = {"pixel_values": images} + return BatchFeature(data=data, tensor_type=return_tensors) + + def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None): + """ + Converts the output of [`MobileNetV2ForSemanticSegmentation`] into semantic segmentation maps. Only supports + PyTorch. + + Args: + outputs ([`MobileNetV2ForSemanticSegmentation`]): + Raw outputs of the model. + target_sizes (`List[Tuple]`, *optional*): + A list of length `batch_size`, where each item is a `Tuple[int, int]` corresponding to the requested + final size (height, width) of each prediction. If left to None, predictions will not be resized. + Returns: + `List[torch.Tensor]`: + A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) + corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each + `torch.Tensor` correspond to a semantic class id. + """ + # TODO: add support for other frameworks + logits = outputs.logits + + # Resize logits and compute semantic segmentation maps + if target_sizes is not None: + if len(logits) != len(target_sizes): + raise ValueError( + "Make sure that you pass in as many target sizes as the batch dimension of the logits" + ) + + if is_torch_tensor(target_sizes): + target_sizes = target_sizes.numpy() + + semantic_segmentation = [] + + for idx in range(len(logits)): + resized_logits = torch.nn.functional.interpolate( + logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False + ) + semantic_map = resized_logits[0].argmax(dim=0) + semantic_segmentation.append(semantic_map) + else: + semantic_segmentation = logits.argmax(dim=1) + semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] + + return semantic_segmentation diff --git a/src/transformers/models/mobilenet_v2/modeling_mobilenet_v2.py b/src/transformers/models/mobilenet_v2/modeling_mobilenet_v2.py new file mode 100755 index 00000000000000..d8b7f205c35018 --- /dev/null +++ b/src/transformers/models/mobilenet_v2/modeling_mobilenet_v2.py @@ -0,0 +1,871 @@ +# coding=utf-8 +# Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch MobileNetV2 model.""" + + +from typing import Optional, Union + +import torch +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutputWithPoolingAndNoAttention, + ImageClassifierOutputWithNoAttention, + SemanticSegmenterOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_mobilenet_v2 import MobileNetV2Config + + +logger = logging.get_logger(__name__) + + +# General docstring +_CONFIG_FOR_DOC = "MobileNetV2Config" +_FEAT_EXTRACTOR_FOR_DOC = "MobileNetV2FeatureExtractor" + +# Base docstring +_CHECKPOINT_FOR_DOC = "google/mobilenet_v2_1.0_224" +_EXPECTED_OUTPUT_SHAPE = [1, 1280, 7, 7] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "google/mobilenet_v2_1.0_224" +_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" + + +MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "google/mobilenet_v2_1.4_224", + "google/mobilenet_v2_1.0_224", + "google/mobilenet_v2_0.37_160", + "google/mobilenet_v2_0.35_96", + # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 +] + + +def _build_tf_to_pytorch_map(model, config, tf_weights=None): + """ + A map of modules from TF to PyTorch. + """ + + tf_to_pt_map = {} + + if isinstance(model, (MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation)): + backbone = model.mobilenet_v2 + else: + backbone = model + + # Use the EMA weights if available + def ema(x): + return x + "/ExponentialMovingAverage" if x + "/ExponentialMovingAverage" in tf_weights else x + + prefix = "MobilenetV2/Conv/" + tf_to_pt_map[ema(prefix + "weights")] = backbone.conv_stem.first_conv.convolution.weight + tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_stem.first_conv.normalization.bias + tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_stem.first_conv.normalization.weight + tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.first_conv.normalization.running_mean + tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.first_conv.normalization.running_var + + prefix = "MobilenetV2/expanded_conv/depthwise/" + tf_to_pt_map[ema(prefix + "depthwise_weights")] = backbone.conv_stem.conv_3x3.convolution.weight + tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_stem.conv_3x3.normalization.bias + tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_stem.conv_3x3.normalization.weight + tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.conv_3x3.normalization.running_mean + tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.conv_3x3.normalization.running_var + + prefix = "MobilenetV2/expanded_conv/project/" + tf_to_pt_map[ema(prefix + "weights")] = backbone.conv_stem.reduce_1x1.convolution.weight + tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_stem.reduce_1x1.normalization.bias + tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_stem.reduce_1x1.normalization.weight + tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.reduce_1x1.normalization.running_mean + tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.reduce_1x1.normalization.running_var + + for i in range(16): + tf_index = i + 1 + pt_index = i + pointer = backbone.layer[pt_index] + + prefix = f"MobilenetV2/expanded_conv_{tf_index}/expand/" + tf_to_pt_map[ema(prefix + "weights")] = pointer.expand_1x1.convolution.weight + tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = pointer.expand_1x1.normalization.bias + tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = pointer.expand_1x1.normalization.weight + tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.expand_1x1.normalization.running_mean + tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.expand_1x1.normalization.running_var + + prefix = f"MobilenetV2/expanded_conv_{tf_index}/depthwise/" + tf_to_pt_map[ema(prefix + "depthwise_weights")] = pointer.conv_3x3.convolution.weight + tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = pointer.conv_3x3.normalization.bias + tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = pointer.conv_3x3.normalization.weight + tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.conv_3x3.normalization.running_mean + tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.conv_3x3.normalization.running_var + + prefix = f"MobilenetV2/expanded_conv_{tf_index}/project/" + tf_to_pt_map[ema(prefix + "weights")] = pointer.reduce_1x1.convolution.weight + tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = pointer.reduce_1x1.normalization.bias + tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = pointer.reduce_1x1.normalization.weight + tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.reduce_1x1.normalization.running_mean + tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.reduce_1x1.normalization.running_var + + prefix = "MobilenetV2/Conv_1/" + tf_to_pt_map[ema(prefix + "weights")] = backbone.conv_1x1.convolution.weight + tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_1x1.normalization.bias + tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_1x1.normalization.weight + tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_1x1.normalization.running_mean + tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_1x1.normalization.running_var + + if isinstance(model, MobileNetV2ForImageClassification): + prefix = "MobilenetV2/Logits/Conv2d_1c_1x1/" + tf_to_pt_map[ema(prefix + "weights")] = model.classifier.weight + tf_to_pt_map[ema(prefix + "biases")] = model.classifier.bias + + if isinstance(model, MobileNetV2ForSemanticSegmentation): + prefix = "image_pooling/" + tf_to_pt_map[prefix + "weights"] = model.segmentation_head.conv_pool.convolution.weight + tf_to_pt_map[prefix + "BatchNorm/beta"] = model.segmentation_head.conv_pool.normalization.bias + tf_to_pt_map[prefix + "BatchNorm/gamma"] = model.segmentation_head.conv_pool.normalization.weight + tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = model.segmentation_head.conv_pool.normalization.running_mean + tf_to_pt_map[ + prefix + "BatchNorm/moving_variance" + ] = model.segmentation_head.conv_pool.normalization.running_var + + prefix = "aspp0/" + tf_to_pt_map[prefix + "weights"] = model.segmentation_head.conv_aspp.convolution.weight + tf_to_pt_map[prefix + "BatchNorm/beta"] = model.segmentation_head.conv_aspp.normalization.bias + tf_to_pt_map[prefix + "BatchNorm/gamma"] = model.segmentation_head.conv_aspp.normalization.weight + tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = model.segmentation_head.conv_aspp.normalization.running_mean + tf_to_pt_map[ + prefix + "BatchNorm/moving_variance" + ] = model.segmentation_head.conv_aspp.normalization.running_var + + prefix = "concat_projection/" + tf_to_pt_map[prefix + "weights"] = model.segmentation_head.conv_projection.convolution.weight + tf_to_pt_map[prefix + "BatchNorm/beta"] = model.segmentation_head.conv_projection.normalization.bias + tf_to_pt_map[prefix + "BatchNorm/gamma"] = model.segmentation_head.conv_projection.normalization.weight + tf_to_pt_map[ + prefix + "BatchNorm/moving_mean" + ] = model.segmentation_head.conv_projection.normalization.running_mean + tf_to_pt_map[ + prefix + "BatchNorm/moving_variance" + ] = model.segmentation_head.conv_projection.normalization.running_var + + prefix = "logits/semantic/" + tf_to_pt_map[ema(prefix + "weights")] = model.segmentation_head.classifier.convolution.weight + tf_to_pt_map[ema(prefix + "biases")] = model.segmentation_head.classifier.convolution.bias + + return tf_to_pt_map + + +def load_tf_weights_in_mobilenet_v2(model, config, tf_checkpoint_path): + """Load TensorFlow checkpoints in a PyTorch model.""" + try: + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + + # Load weights from TF model + init_vars = tf.train.list_variables(tf_checkpoint_path) + tf_weights = {} + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_checkpoint_path, name) + tf_weights[name] = array + + # Build TF to PyTorch weights loading map + tf_to_pt_map = _build_tf_to_pytorch_map(model, config, tf_weights) + + for name, pointer in tf_to_pt_map.items(): + logger.info(f"Importing {name}") + if name not in tf_weights: + logger.info(f"{name} not in tf pre-trained weights, skipping") + continue + + array = tf_weights[name] + + if "depthwise_weights" in name: + logger.info("Transposing depthwise") + array = np.transpose(array, (2, 3, 0, 1)) + elif "weights" in name: + logger.info("Transposing") + if len(pointer.shape) == 2: # copying into linear layer + array = array.squeeze().transpose() + else: + array = np.transpose(array, (3, 2, 0, 1)) + + if pointer.shape != array.shape: + raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") + + logger.info(f"Initialize PyTorch weight {name} {array.shape}") + pointer.data = torch.from_numpy(array) + + tf_weights.pop(name, None) + tf_weights.pop(name + "/RMSProp", None) + tf_weights.pop(name + "/RMSProp_1", None) + tf_weights.pop(name + "/ExponentialMovingAverage", None) + tf_weights.pop(name + "/Momentum", None) + + logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}") + return model + + +def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int: + """ + Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the + original TensorFlow repo. It can be seen here: + https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py + """ + if min_value is None: + min_value = divisor + new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) + # Make sure that round down does not go down by more than 10%. + if new_value < 0.9 * value: + new_value += divisor + return int(new_value) + + +def apply_depth_multiplier(config: MobileNetV2Config, channels: int) -> int: + return make_divisible(int(round(channels * config.depth_multiplier)), config.depth_divisible_by, config.min_depth) + + +def apply_tf_padding(features: torch.Tensor, conv_layer: nn.Conv2d) -> torch.Tensor: + """ + Apply TensorFlow-style "SAME" padding to a convolution layer. See the notes at: + https://www.tensorflow.org/api_docs/python/tf/nn#notes_on_padding_2 + """ + in_height = int(features.shape[-2]) + in_width = int(features.shape[-1]) + stride_height, stride_width = conv_layer.stride + kernel_height, kernel_width = conv_layer.kernel_size + dilation_height, dilation_width = conv_layer.dilation + + if in_height % stride_height == 0: + pad_along_height = max(kernel_height - stride_height, 0) + else: + pad_along_height = max(kernel_height - (in_height % stride_height), 0) + + if in_width % stride_width == 0: + pad_along_width = max(kernel_width - stride_width, 0) + else: + pad_along_width = max(kernel_width - (in_width % stride_width), 0) + + pad_left = pad_along_width // 2 + pad_right = pad_along_width - pad_left + pad_top = pad_along_height // 2 + pad_bottom = pad_along_height - pad_top + + padding = ( + pad_left * dilation_width, + pad_right * dilation_width, + pad_top * dilation_height, + pad_bottom * dilation_height, + ) + return nn.functional.pad(features, padding, "constant", 0.0) + + +class MobileNetV2ConvLayer(nn.Module): + def __init__( + self, + config: MobileNetV2Config, + in_channels: int, + out_channels: int, + kernel_size: int, + stride: int = 1, + groups: int = 1, + bias: bool = False, + dilation: int = 1, + use_normalization: bool = True, + use_activation: Union[bool, str] = True, + layer_norm_eps: Optional[float] = None, + ) -> None: + super().__init__() + self.config = config + + if in_channels % groups != 0: + raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.") + if out_channels % groups != 0: + raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") + + padding = 0 if config.tf_padding else int((kernel_size - 1) / 2) * dilation + + self.convolution = nn.Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + groups=groups, + bias=bias, + padding_mode="zeros", + ) + + if use_normalization: + self.normalization = nn.BatchNorm2d( + num_features=out_channels, + eps=config.layer_norm_eps if layer_norm_eps is None else layer_norm_eps, + momentum=0.997, + affine=True, + track_running_stats=True, + ) + else: + self.normalization = None + + if use_activation: + if isinstance(use_activation, str): + self.activation = ACT2FN[use_activation] + elif isinstance(config.hidden_act, str): + self.activation = ACT2FN[config.hidden_act] + else: + self.activation = config.hidden_act + else: + self.activation = None + + def forward(self, features: torch.Tensor) -> torch.Tensor: + if self.config.tf_padding: + features = apply_tf_padding(features, self.convolution) + features = self.convolution(features) + if self.normalization is not None: + features = self.normalization(features) + if self.activation is not None: + features = self.activation(features) + return features + + +class MobileNetV2InvertedResidual(nn.Module): + def __init__( + self, config: MobileNetV2Config, in_channels: int, out_channels: int, stride: int, dilation: int = 1 + ) -> None: + super().__init__() + + expanded_channels = make_divisible( + int(round(in_channels * config.expand_ratio)), config.depth_divisible_by, config.min_depth + ) + + if stride not in [1, 2]: + raise ValueError(f"Invalid stride {stride}.") + + self.use_residual = (stride == 1) and (in_channels == out_channels) + + self.expand_1x1 = MobileNetV2ConvLayer( + config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1 + ) + + self.conv_3x3 = MobileNetV2ConvLayer( + config, + in_channels=expanded_channels, + out_channels=expanded_channels, + kernel_size=3, + stride=stride, + groups=expanded_channels, + dilation=dilation, + ) + + self.reduce_1x1 = MobileNetV2ConvLayer( + config, + in_channels=expanded_channels, + out_channels=out_channels, + kernel_size=1, + use_activation=False, + ) + + def forward(self, features: torch.Tensor) -> torch.Tensor: + residual = features + + features = self.expand_1x1(features) + features = self.conv_3x3(features) + features = self.reduce_1x1(features) + + return residual + features if self.use_residual else features + + +class MobileNetV2Stem(nn.Module): + def __init__(self, config: MobileNetV2Config, in_channels: int, expanded_channels: int, out_channels: int) -> None: + super().__init__() + + # The very first layer is a regular 3x3 convolution with stride 2 that expands to 32 channels. + # All other expansion layers use the expansion factor to compute the number of output channels. + self.first_conv = MobileNetV2ConvLayer( + config, + in_channels=in_channels, + out_channels=expanded_channels, + kernel_size=3, + stride=2, + ) + + if config.first_layer_is_expansion: + self.expand_1x1 = None + else: + self.expand_1x1 = MobileNetV2ConvLayer( + config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=1 + ) + + self.conv_3x3 = MobileNetV2ConvLayer( + config, + in_channels=expanded_channels, + out_channels=expanded_channels, + kernel_size=3, + stride=1, + groups=expanded_channels, + ) + + self.reduce_1x1 = MobileNetV2ConvLayer( + config, + in_channels=expanded_channels, + out_channels=out_channels, + kernel_size=1, + use_activation=False, + ) + + def forward(self, features: torch.Tensor) -> torch.Tensor: + features = self.first_conv(features) + if self.expand_1x1 is not None: + features = self.expand_1x1(features) + features = self.conv_3x3(features) + features = self.reduce_1x1(features) + return features + + +class MobileNetV2PreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MobileNetV2Config + load_tf_weights = load_tf_weights_in_mobilenet_v2 + base_model_prefix = "mobilenet_v2" + main_input_name = "pixel_values" + supports_gradient_checkpointing = False + + def _init_weights(self, module: Union[nn.Linear, nn.Conv2d]) -> None: + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.BatchNorm2d): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +MOBILENET_V2_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`MobileNetV2Config`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MOBILENET_V2_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`MobileNetV2FeatureExtractor`]. See + [`MobileNetV2FeatureExtractor.__call__`] for details. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare MobileNetV2 model outputting raw hidden-states without any specific head on top.", + MOBILENET_V2_START_DOCSTRING, +) +class MobileNetV2Model(MobileNetV2PreTrainedModel): + def __init__(self, config: MobileNetV2Config, add_pooling_layer: bool = True): + super().__init__(config) + self.config = config + + # Output channels for the projection layers + channels = [16, 24, 24, 32, 32, 32, 64, 64, 64, 64, 96, 96, 96, 160, 160, 160, 320] + channels = [apply_depth_multiplier(config, x) for x in channels] + + # Strides for the depthwise layers + strides = [2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1] + + self.conv_stem = MobileNetV2Stem( + config, + in_channels=config.num_channels, + expanded_channels=apply_depth_multiplier(config, 32), + out_channels=channels[0], + ) + + current_stride = 2 # first conv layer has stride 2 + dilation = 1 + + self.layer = nn.ModuleList() + for i in range(16): + # Keep making the feature maps smaller or use dilated convolution? + if current_stride == config.output_stride: + layer_stride = 1 + layer_dilation = dilation + dilation *= strides[i] # larger dilation starts in next block + else: + layer_stride = strides[i] + layer_dilation = 1 + current_stride *= layer_stride + + self.layer.append( + MobileNetV2InvertedResidual( + config, + in_channels=channels[i], + out_channels=channels[i + 1], + stride=layer_stride, + dilation=layer_dilation, + ) + ) + + if config.finegrained_output and config.depth_multiplier < 1.0: + output_channels = 1280 + else: + output_channels = apply_depth_multiplier(config, 1280) + + self.conv_1x1 = MobileNetV2ConvLayer( + config, + in_channels=channels[-1], + out_channels=output_channels, + kernel_size=1, + ) + + self.pooler = nn.AdaptiveAvgPool2d((1, 1)) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def _prune_heads(self, heads_to_prune): + raise NotImplementedError + + @add_start_docstrings_to_model_forward(MOBILENET_V2_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + processor_class=_FEAT_EXTRACTOR_FOR_DOC, + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPoolingAndNoAttention, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + hidden_states = self.conv_stem(pixel_values) + + all_hidden_states = () if output_hidden_states else None + + for i, layer_module in enumerate(self.layer): + hidden_states = layer_module(hidden_states) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + last_hidden_state = self.conv_1x1(hidden_states) + + if self.pooler is not None: + pooled_output = torch.flatten(self.pooler(last_hidden_state), start_dim=1) + else: + pooled_output = None + + if not return_dict: + return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) + + return BaseModelOutputWithPoolingAndNoAttention( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=all_hidden_states, + ) + + +@add_start_docstrings( + """ + MobileNetV2 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for + ImageNet. + """, + MOBILENET_V2_START_DOCSTRING, +) +class MobileNetV2ForImageClassification(MobileNetV2PreTrainedModel): + def __init__(self, config: MobileNetV2Config) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.mobilenet_v2 = MobileNetV2Model(config) + + last_hidden_size = self.mobilenet_v2.conv_1x1.convolution.out_channels + + # Classifier head + self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True) + self.classifier = nn.Linear(last_hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MOBILENET_V2_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + processor_class=_FEAT_EXTRACTOR_FOR_DOC, + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=ImageClassifierOutputWithNoAttention, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + output_hidden_states: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mobilenet_v2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) + + pooled_output = outputs.pooler_output if return_dict else outputs[1] + + logits = self.classifier(self.dropout(pooled_output)) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutputWithNoAttention( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + ) + + +class MobileNetV2DeepLabV3Plus(nn.Module): + """ + The neural network from the paper "Encoder-Decoder with Atrous Separable Convolution for Semantic Image + Segmentation" https://arxiv.org/abs/1802.02611 + """ + + def __init__(self, config: MobileNetV2Config) -> None: + super().__init__() + + self.avg_pool = nn.AdaptiveAvgPool2d(output_size=1) + + self.conv_pool = MobileNetV2ConvLayer( + config, + in_channels=apply_depth_multiplier(config, 320), + out_channels=256, + kernel_size=1, + stride=1, + use_normalization=True, + use_activation="relu", + layer_norm_eps=1e-5, + ) + + self.conv_aspp = MobileNetV2ConvLayer( + config, + in_channels=apply_depth_multiplier(config, 320), + out_channels=256, + kernel_size=1, + stride=1, + use_normalization=True, + use_activation="relu", + layer_norm_eps=1e-5, + ) + + self.conv_projection = MobileNetV2ConvLayer( + config, + in_channels=512, + out_channels=256, + kernel_size=1, + stride=1, + use_normalization=True, + use_activation="relu", + layer_norm_eps=1e-5, + ) + + self.dropout = nn.Dropout2d(config.classifier_dropout_prob) + + self.classifier = MobileNetV2ConvLayer( + config, + in_channels=256, + out_channels=config.num_labels, + kernel_size=1, + use_normalization=False, + use_activation=False, + bias=True, + ) + + def forward(self, features: torch.Tensor) -> torch.Tensor: + spatial_size = features.shape[-2:] + + features_pool = self.avg_pool(features) + features_pool = self.conv_pool(features_pool) + features_pool = nn.functional.interpolate( + features_pool, size=spatial_size, mode="bilinear", align_corners=True + ) + + features_aspp = self.conv_aspp(features) + + features = torch.cat([features_pool, features_aspp], dim=1) + + features = self.conv_projection(features) + features = self.dropout(features) + features = self.classifier(features) + return features + + +@add_start_docstrings( + """ + MobileNetV2 model with a semantic segmentation head on top, e.g. for Pascal VOC. + """, + MOBILENET_V2_START_DOCSTRING, +) +class MobileNetV2ForSemanticSegmentation(MobileNetV2PreTrainedModel): + def __init__(self, config: MobileNetV2Config) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.mobilenet_v2 = MobileNetV2Model(config, add_pooling_layer=False) + self.segmentation_head = MobileNetV2DeepLabV3Plus(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MOBILENET_V2_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, SemanticSegmenterOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): + Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import MobileNetV2FeatureExtractor, MobileNetV2ForSemanticSegmentation + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> feature_extractor = MobileNetV2FeatureExtractor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") + >>> model = MobileNetV2ForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") + + >>> inputs = feature_extractor(images=image, return_tensors="pt") + + >>> with torch.no_grad(): + ... outputs = model(**inputs) + + >>> # logits are of shape (batch_size, num_labels, height, width) + >>> logits = outputs.logits + ```""" + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mobilenet_v2( + pixel_values, + output_hidden_states=True, # we need the intermediate hidden states + return_dict=return_dict, + ) + + encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] + + logits = self.segmentation_head(encoder_hidden_states[-1]) + + loss = None + if labels is not None: + if self.config.num_labels == 1: + raise ValueError("The number of labels should be greater than one") + else: + # upsample logits to the images' original size + upsampled_logits = nn.functional.interpolate( + logits, size=labels.shape[-2:], mode="bilinear", align_corners=False + ) + loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) + loss = loss_fct(upsampled_logits, labels) + + if not return_dict: + if output_hidden_states: + output = (logits,) + outputs[1:] + else: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SemanticSegmenterOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states if output_hidden_states else None, + attentions=None, + ) diff --git a/src/transformers/onnx/features.py b/src/transformers/onnx/features.py index 8e69c5a1a0e23e..6e9d7c2d809e55 100644 --- a/src/transformers/onnx/features.py +++ b/src/transformers/onnx/features.py @@ -408,6 +408,11 @@ class FeaturesManager: "question-answering", onnx_config_cls="models.mobilebert.MobileBertOnnxConfig", ), + "mobilenet_v2": supported_features_mapping( + "default", + "image-classification", + onnx_config_cls="models.mobilenet_v2.MobileNetV2OnnxConfig", + ), "mobilevit": supported_features_mapping( "default", "image-classification", diff --git a/src/transformers/utils/dummy_pt_objects.py b/src/transformers/utils/dummy_pt_objects.py index d44493fef83a79..58a8607e5c87ea 100644 --- a/src/transformers/utils/dummy_pt_objects.py +++ b/src/transformers/utils/dummy_pt_objects.py @@ -3526,6 +3526,41 @@ def load_tf_weights_in_mobilebert(*args, **kwargs): requires_backends(load_tf_weights_in_mobilebert, ["torch"]) +MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None + + +class MobileNetV2ForImageClassification(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + +class MobileNetV2ForSemanticSegmentation(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + +class MobileNetV2Model(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + +class MobileNetV2PreTrainedModel(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + +def load_tf_weights_in_mobilenet_v2(*args, **kwargs): + requires_backends(load_tf_weights_in_mobilenet_v2, ["torch"]) + + MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None diff --git a/src/transformers/utils/dummy_vision_objects.py b/src/transformers/utils/dummy_vision_objects.py index 829d7040864f02..63c0baaeffc666 100644 --- a/src/transformers/utils/dummy_vision_objects.py +++ b/src/transformers/utils/dummy_vision_objects.py @@ -225,6 +225,20 @@ def __init__(self, *args, **kwargs): requires_backends(self, ["vision"]) +class MobileNetV2FeatureExtractor(metaclass=DummyObject): + _backends = ["vision"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["vision"]) + + +class MobileNetV2ImageProcessor(metaclass=DummyObject): + _backends = ["vision"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["vision"]) + + class MobileViTFeatureExtractor(metaclass=DummyObject): _backends = ["vision"] diff --git a/tests/models/mobilenet_v2/__init__.py b/tests/models/mobilenet_v2/__init__.py new file mode 100644 index 00000000000000..e69de29bb2d1d6 diff --git a/tests/models/mobilenet_v2/test_feature_extraction_mobilenet_v2.py b/tests/models/mobilenet_v2/test_feature_extraction_mobilenet_v2.py new file mode 100644 index 00000000000000..1c88492e4c2659 --- /dev/null +++ b/tests/models/mobilenet_v2/test_feature_extraction_mobilenet_v2.py @@ -0,0 +1,189 @@ +# coding=utf-8 +# Copyright 2022 HuggingFace Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import unittest + +import numpy as np + +from transformers.testing_utils import require_torch, require_vision +from transformers.utils import is_torch_available, is_vision_available + +from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs + + +if is_torch_available(): + import torch + +if is_vision_available(): + from PIL import Image + + from transformers import MobileNetV2FeatureExtractor + + +class MobileNetV2FeatureExtractionTester(unittest.TestCase): + def __init__( + self, + parent, + batch_size=7, + num_channels=3, + image_size=18, + min_resolution=30, + max_resolution=400, + do_resize=True, + size=None, + do_center_crop=True, + crop_size=None, + ): + size = size if size is not None else {"shortest_edge": 20} + crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} + self.parent = parent + self.batch_size = batch_size + self.num_channels = num_channels + self.image_size = image_size + self.min_resolution = min_resolution + self.max_resolution = max_resolution + self.do_resize = do_resize + self.size = size + self.do_center_crop = do_center_crop + self.crop_size = crop_size + + def prepare_feat_extract_dict(self): + return { + "do_resize": self.do_resize, + "size": self.size, + "do_center_crop": self.do_center_crop, + "crop_size": self.crop_size, + } + + +@require_torch +@require_vision +class MobileNetV2FeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase): + + feature_extraction_class = MobileNetV2FeatureExtractor if is_vision_available() else None + + def setUp(self): + self.feature_extract_tester = MobileNetV2FeatureExtractionTester(self) + + @property + def feat_extract_dict(self): + return self.feature_extract_tester.prepare_feat_extract_dict() + + def test_feat_extract_properties(self): + feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) + self.assertTrue(hasattr(feature_extractor, "do_resize")) + self.assertTrue(hasattr(feature_extractor, "size")) + self.assertTrue(hasattr(feature_extractor, "do_center_crop")) + self.assertTrue(hasattr(feature_extractor, "center_crop")) + + def test_batch_feature(self): + pass + + def test_call_pil(self): + # Initialize feature_extractor + feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) + # create random PIL images + image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False) + for image in image_inputs: + self.assertIsInstance(image, Image.Image) + + # Test not batched input + encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values + self.assertEqual( + encoded_images.shape, + ( + 1, + self.feature_extract_tester.num_channels, + self.feature_extract_tester.crop_size["height"], + self.feature_extract_tester.crop_size["width"], + ), + ) + + # Test batched + encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values + self.assertEqual( + encoded_images.shape, + ( + self.feature_extract_tester.batch_size, + self.feature_extract_tester.num_channels, + self.feature_extract_tester.crop_size["height"], + self.feature_extract_tester.crop_size["width"], + ), + ) + + def test_call_numpy(self): + # Initialize feature_extractor + feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) + # create random numpy tensors + image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True) + for image in image_inputs: + self.assertIsInstance(image, np.ndarray) + + # Test not batched input + encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values + self.assertEqual( + encoded_images.shape, + ( + 1, + self.feature_extract_tester.num_channels, + self.feature_extract_tester.crop_size["height"], + self.feature_extract_tester.crop_size["width"], + ), + ) + + # Test batched + encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values + self.assertEqual( + encoded_images.shape, + ( + self.feature_extract_tester.batch_size, + self.feature_extract_tester.num_channels, + self.feature_extract_tester.crop_size["height"], + self.feature_extract_tester.crop_size["width"], + ), + ) + + def test_call_pytorch(self): + # Initialize feature_extractor + feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) + # create random PyTorch tensors + image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True) + for image in image_inputs: + self.assertIsInstance(image, torch.Tensor) + + # Test not batched input + encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values + self.assertEqual( + encoded_images.shape, + ( + 1, + self.feature_extract_tester.num_channels, + self.feature_extract_tester.crop_size["height"], + self.feature_extract_tester.crop_size["width"], + ), + ) + + # Test batched + encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values + self.assertEqual( + encoded_images.shape, + ( + self.feature_extract_tester.batch_size, + self.feature_extract_tester.num_channels, + self.feature_extract_tester.crop_size["height"], + self.feature_extract_tester.crop_size["width"], + ), + ) diff --git a/tests/models/mobilenet_v2/test_modeling_mobilenet_v2.py b/tests/models/mobilenet_v2/test_modeling_mobilenet_v2.py new file mode 100644 index 00000000000000..70a6d710a71f13 --- /dev/null +++ b/tests/models/mobilenet_v2/test_modeling_mobilenet_v2.py @@ -0,0 +1,343 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Testing suite for the PyTorch MobileNetV2 model. """ + + +import inspect +import unittest + +from transformers import MobileNetV2Config +from transformers.testing_utils import require_torch, require_vision, slow, torch_device +from transformers.utils import cached_property, is_torch_available, is_vision_available + +from ...test_configuration_common import ConfigTester +from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor + + +if is_torch_available(): + import torch + + from transformers import MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation, MobileNetV2Model + from transformers.models.mobilenet_v2.modeling_mobilenet_v2 import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST + + +if is_vision_available(): + from PIL import Image + + from transformers import MobileNetV2FeatureExtractor + + +class MobileNetV2ConfigTester(ConfigTester): + def create_and_test_config_common_properties(self): + config = self.config_class(**self.inputs_dict) + self.parent.assertTrue(hasattr(config, "tf_padding")) + self.parent.assertTrue(hasattr(config, "depth_multiplier")) + + +class MobileNetV2ModelTester: + def __init__( + self, + parent, + batch_size=13, + num_channels=3, + image_size=32, + depth_multiplier=0.25, + depth_divisible_by=8, + min_depth=8, + expand_ratio=6, + output_stride=32, + first_layer_is_expansion=True, + finegrained_output=True, + tf_padding=True, + hidden_act="relu6", + last_hidden_size=1280, + classifier_dropout_prob=0.1, + initializer_range=0.02, + is_training=True, + use_labels=True, + num_labels=10, + scope=None, + ): + self.parent = parent + self.batch_size = batch_size + self.num_channels = num_channels + self.image_size = image_size + self.depth_multiplier = depth_multiplier + self.depth_divisible_by = depth_divisible_by + self.min_depth = min_depth + self.expand_ratio = expand_ratio + self.tf_padding = tf_padding + self.output_stride = output_stride + self.first_layer_is_expansion = first_layer_is_expansion + self.finegrained_output = finegrained_output + self.hidden_act = hidden_act + self.last_hidden_size = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier) + self.classifier_dropout_prob = classifier_dropout_prob + self.use_labels = use_labels + self.is_training = is_training + self.num_labels = num_labels + self.initializer_range = initializer_range + self.scope = scope + + def prepare_config_and_inputs(self): + pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) + + labels = None + pixel_labels = None + if self.use_labels: + labels = ids_tensor([self.batch_size], self.num_labels) + pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) + + config = self.get_config() + + return config, pixel_values, labels, pixel_labels + + def get_config(self): + return MobileNetV2Config( + num_channels=self.num_channels, + image_size=self.image_size, + depth_multiplier=self.depth_multiplier, + depth_divisible_by=self.depth_divisible_by, + min_depth=self.min_depth, + expand_ratio=self.expand_ratio, + output_stride=self.output_stride, + first_layer_is_expansion=self.first_layer_is_expansion, + finegrained_output=self.finegrained_output, + hidden_act=self.hidden_act, + tf_padding=self.tf_padding, + classifier_dropout_prob=self.classifier_dropout_prob, + initializer_range=self.initializer_range, + ) + + def create_and_check_model(self, config, pixel_values, labels, pixel_labels): + model = MobileNetV2Model(config=config) + model.to(torch_device) + model.eval() + result = model(pixel_values) + self.parent.assertEqual( + result.last_hidden_state.shape, + ( + self.batch_size, + self.last_hidden_size, + self.image_size // self.output_stride, + self.image_size // self.output_stride, + ), + ) + self.parent.assertEqual( + result.pooler_output.shape, + (self.batch_size, self.last_hidden_size), + ) + + def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): + config.num_labels = self.num_labels + model = MobileNetV2ForImageClassification(config) + model.to(torch_device) + model.eval() + result = model(pixel_values, labels=labels) + self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) + + def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels): + config.num_labels = self.num_labels + model = MobileNetV2ForSemanticSegmentation(config) + model.to(torch_device) + model.eval() + result = model(pixel_values) + self.parent.assertEqual( + result.logits.shape, + ( + self.batch_size, + self.num_labels, + self.image_size // self.output_stride, + self.image_size // self.output_stride, + ), + ) + result = model(pixel_values, labels=pixel_labels) + self.parent.assertEqual( + result.logits.shape, + ( + self.batch_size, + self.num_labels, + self.image_size // self.output_stride, + self.image_size // self.output_stride, + ), + ) + + def prepare_config_and_inputs_for_common(self): + config_and_inputs = self.prepare_config_and_inputs() + config, pixel_values, labels, pixel_labels = config_and_inputs + inputs_dict = {"pixel_values": pixel_values} + return config, inputs_dict + + +@require_torch +class MobileNetV2ModelTest(ModelTesterMixin, unittest.TestCase): + """ + Here we also overwrite some of the tests of test_modeling_common.py, as MobileNetV2 does not use input_ids, inputs_embeds, + attention_mask and seq_length. + """ + + all_model_classes = ( + (MobileNetV2Model, MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation) + if is_torch_available() + else () + ) + + test_pruning = False + test_resize_embeddings = False + test_head_masking = False + has_attentions = False + + def setUp(self): + self.model_tester = MobileNetV2ModelTester(self) + self.config_tester = MobileNetV2ConfigTester(self, config_class=MobileNetV2Config, has_text_modality=False) + + def test_config(self): + self.config_tester.run_common_tests() + + @unittest.skip(reason="MobileNetV2 does not use inputs_embeds") + def test_inputs_embeds(self): + pass + + @unittest.skip(reason="MobileNetV2 does not support input and output embeddings") + def test_model_common_attributes(self): + pass + + @unittest.skip(reason="MobileNetV2 does not output attentions") + def test_attention_outputs(self): + pass + + def test_forward_signature(self): + config, _ = self.model_tester.prepare_config_and_inputs_for_common() + + for model_class in self.all_model_classes: + model = model_class(config) + signature = inspect.signature(model.forward) + # signature.parameters is an OrderedDict => so arg_names order is deterministic + arg_names = [*signature.parameters.keys()] + + expected_arg_names = ["pixel_values"] + self.assertListEqual(arg_names[:1], expected_arg_names) + + def test_model(self): + config_and_inputs = self.model_tester.prepare_config_and_inputs() + self.model_tester.create_and_check_model(*config_and_inputs) + + def test_hidden_states_output(self): + def check_hidden_states_output(inputs_dict, config, model_class): + model = model_class(config) + model.to(torch_device) + model.eval() + + with torch.no_grad(): + outputs = model(**self._prepare_for_class(inputs_dict, model_class)) + + hidden_states = outputs.hidden_states + + expected_num_stages = 16 + self.assertEqual(len(hidden_states), expected_num_stages) + + config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() + + for model_class in self.all_model_classes: + inputs_dict["output_hidden_states"] = True + check_hidden_states_output(inputs_dict, config, model_class) + + # check that output_hidden_states also work using config + del inputs_dict["output_hidden_states"] + config.output_hidden_states = True + + check_hidden_states_output(inputs_dict, config, model_class) + + def test_for_image_classification(self): + config_and_inputs = self.model_tester.prepare_config_and_inputs() + self.model_tester.create_and_check_for_image_classification(*config_and_inputs) + + def test_for_semantic_segmentation(self): + config_and_inputs = self.model_tester.prepare_config_and_inputs() + self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs) + + @slow + def test_model_from_pretrained(self): + for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: + model = MobileNetV2Model.from_pretrained(model_name) + self.assertIsNotNone(model) + + +# We will verify our results on an image of cute cats +def prepare_img(): + image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") + return image + + +@require_torch +@require_vision +class MobileNetV2ModelIntegrationTest(unittest.TestCase): + @cached_property + def default_feature_extractor(self): + return ( + MobileNetV2FeatureExtractor.from_pretrained("google/mobilenet_v2_1.0_224") + if is_vision_available() + else None + ) + + @slow + def test_inference_image_classification_head(self): + model = MobileNetV2ForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224").to(torch_device) + + feature_extractor = self.default_feature_extractor + image = prepare_img() + inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) + + # forward pass + with torch.no_grad(): + outputs = model(**inputs) + + # verify the logits + expected_shape = torch.Size((1, 1001)) + self.assertEqual(outputs.logits.shape, expected_shape) + + expected_slice = torch.tensor([0.2445, -1.1993, 0.1905]).to(torch_device) + + self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) + + @slow + def test_inference_semantic_segmentation(self): + model = MobileNetV2ForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") + model = model.to(torch_device) + + feature_extractor = MobileNetV2FeatureExtractor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") + + image = prepare_img() + inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) + + # forward pass + with torch.no_grad(): + outputs = model(**inputs) + logits = outputs.logits + + # verify the logits + expected_shape = torch.Size((1, 21, 65, 65)) + self.assertEqual(logits.shape, expected_shape) + + expected_slice = torch.tensor( + [ + [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], + [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], + [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], + ], + device=torch_device, + ) + + self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4)) diff --git a/tests/onnx/test_onnx_v2.py b/tests/onnx/test_onnx_v2.py index ab8610db718607..ad295814713339 100644 --- a/tests/onnx/test_onnx_v2.py +++ b/tests/onnx/test_onnx_v2.py @@ -199,6 +199,7 @@ def test_values_override(self): ("roformer", "junnyu/roformer_chinese_base"), ("squeezebert", "squeezebert/squeezebert-uncased"), ("mobilebert", "google/mobilebert-uncased"), + ("mobilenet_v2", "google/mobilenet_v2_0.35_96"), ("mobilevit", "apple/mobilevit-small"), ("xlm", "xlm-clm-ende-1024"), ("xlm-roberta", "xlm-roberta-base"), diff --git a/utils/documentation_tests.txt b/utils/documentation_tests.txt index e4bbbe57cd50dd..7eca5d36441c15 100644 --- a/utils/documentation_tests.txt +++ b/utils/documentation_tests.txt @@ -107,6 +107,7 @@ src/transformers/models/megatron_bert/configuration_megatron_bert.py src/transformers/models/mobilebert/configuration_mobilebert.py src/transformers/models/mobilebert/modeling_mobilebert.py src/transformers/models/mobilebert/modeling_tf_mobilebert.py +src/transformers/models/mobilenet_v2/modeling_mobilenet_v2.py src/transformers/models/mobilevit/modeling_mobilevit.py src/transformers/models/mobilevit/modeling_tf_mobilevit.py src/transformers/models/nezha/configuration_nezha.py