-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathta.py
419 lines (302 loc) · 10.8 KB
/
ta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# -*- coding: utf-8 -*-
from __future__ import division
from functools import wraps
import numpy as np
from pandas import DataFrame, Series
from pandas.stats import moments
import pandas as pd
def simple_moving_average(prices, period=26):
"""
:param df: pandas dataframe object
:param period: periods for calculating SMA
:return: a pandas series
"""
weights = np.repeat(1.0, period)/period
sma = np.convolve(prices, weights, 'valid')
return sma
def stochastic_oscillator_k(df):
"""Calculate stochastic oscillator %K for given data.
:param df: pandas.DataFrame
:return: pandas.DataFrame
"""
SOk = pd.Series((df['close'] - df['low']) / (df['high'] - df['low']), name='SO%k')
df = df.join(SOk)
return df
def stochastic_oscillator_d(df, n):
"""Calculate stochastic oscillator %D for given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
SOk = pd.Series((df['close'] - df['low']) / (df['high'] - df['low']), name='SO%k')
SOd = pd.Series(SOk.ewm(span=n, min_periods=n).mean(), name='SO%d')
df = df.join(SOd)
return df
def bollinger_bands(df, n, std, add_ave=True):
"""
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
ave = df['close'].rolling(window=n, center=False).mean()
sd = df['close'].rolling(window=n, center=False).std()
upband = pd.Series(ave + (sd * std), name='bband_upper_' + str(n))
dnband = pd.Series(ave - (sd * std), name='bband_lower_' + str(n))
if add_ave:
ave = pd.Series(ave, name='bband_ave_' + str(n))
df = df.join(pd.concat([upband, dnband, ave], axis=1))
else:
df = df.join(pd.concat([upband, dnband], axis=1))
return df
def money_flow_index(df, n):
"""Calculate Money Flow Index and Ratio for given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
PP = (df['high'] + df['low'] + df['close']) / 3
i = 0
PosMF = [0]
while i < df.index[-1]:
if PP[i + 1] > PP[i]:
PosMF.append(PP[i + 1] * df.loc[i + 1, 'volume'])
else:
PosMF.append(0)
i = i + 1
PosMF = pd.Series(PosMF)
TotMF = PP * df['volume']
MFR = pd.Series(PosMF / TotMF)
MFI = pd.Series(MFR.rolling(n, min_periods=n).mean())
# df = df.join(MFI)
return MFI
def series_indicator(col):
def inner_series_indicator(f):
@wraps(f)
def wrapper(s, *args, **kwargs):
if isinstance(s, DataFrame):
s = s[col]
return f(s, *args, **kwargs)
return wrapper
return inner_series_indicator
def _wilder_sum(s, n):
s = s.dropna()
nf = (n - 1) / n
ws = [np.nan]*(n - 1) + [s[n - 1] + nf*sum(s[:n - 1])]
for v in s[n:]:
ws.append(v + ws[-1]*nf)
return Series(ws, index=s.index)
@series_indicator('high')
def hhv(s, n):
return moments.rolling_max(s, n)
@series_indicator('low')
def llv(s, n):
return moments.rolling_min(s, n)
@series_indicator('close')
def ema(s, n, wilder=False):
span = n if not wilder else 2*n - 1
return moments.ewma(s, span=span)
@series_indicator('close')
def macd(s, nfast=12, nslow=26, nsig=9, percent=True):
fast, slow = ema(s, nfast), ema(s, nslow)
if percent:
macd = 100*(fast / slow - 1)
else:
macd = fast - slow
sig = ema(macd, nsig)
hist = macd - sig
return DataFrame(dict(macd=macd, signal=sig, hist=hist,
fast=fast, slow=slow))
def aroon(s, n=25):
up = 100 * moments.rolling_apply(s.high, n + 1, lambda x: x.argmax()) / n
dn = 100 * moments.rolling_apply(s.low, n + 1, lambda x: x.argmin()) / n
return DataFrame(dict(up=up, down=dn))
@series_indicator('close')
def rsi(s, n=14):
diff = s.diff()
which_dn = diff < 0
up, dn = diff, diff*0
up[which_dn], dn[which_dn] = 0, -up[which_dn]
emaup = ema(up, n, wilder=True)
emadn = ema(dn, n, wilder=True)
return 100 * emaup/(emaup + emadn)
def stoch(s, nfastk=14, nfullk=3, nfulld=3):
if not isinstance(s, DataFrame):
s = DataFrame(dict(high=s, low=s, close=s))
hmax, lmin = hhv(s, nfastk), llv(s, nfastk)
fastk = 100 * (s.close - lmin)/(hmax - lmin)
fullk = moments.rolling_mean(fastk, nfullk)
fulld = moments.rolling_mean(fullk, nfulld)
return DataFrame(dict(fastk=fastk, fullk=fullk, fulld=fulld))
@series_indicator('close')
def dtosc(s, nrsi=13, nfastk=8, nfullk=5, nfulld=3):
srsi = stoch(rsi(s, nrsi), nfastk, nfullk, nfulld)
return DataFrame(dict(fast=srsi.fullk, slow=srsi.fulld))
def atr(s, n=14):
cs = s.close.shift(1)
tr = s.high.combine(cs, max) - s.low.combine(cs, min)
return ema(tr, n, wilder=True)
def cci(s, n=20, c=0.015):
if isinstance(s, DataFrame):
s = s[['high', 'low', 'close']].mean(axis=1)
mavg = moments.rolling_mean(s, n)
mdev = moments.rolling_apply(s, n, lambda x: np.fabs(x - x.mean()).mean())
return (s - mavg)/(c * mdev)
def cmf(s, n=20):
clv = (2*s.close - s.high - s.low) / (s.high - s.low)
vol = s.volume
return moments.rolling_sum(clv*vol, n) / moments.rolling_sum(vol, n)
def force(s, n=2):
return ema(s.close.diff()*s.volume, n)
@series_indicator('close')
def kst(s, r1=10, r2=15, r3=20, r4=30, n1=10, n2=10, n3=10, n4=15, nsig=9):
rocma1 = moments.rolling_mean(s / s.shift(r1) - 1, n1)
rocma2 = moments.rolling_mean(s / s.shift(r2) - 1, n2)
rocma3 = moments.rolling_mean(s / s.shift(r3) - 1, n3)
rocma4 = moments.rolling_mean(s / s.shift(r4) - 1, n4)
kst = 100*(rocma1 + 2*rocma2 + 3*rocma3 + 4*rocma4)
sig = moments.rolling_mean(kst, nsig)
return DataFrame(dict(kst=kst, signal=sig))
def ichimoku(s, n1=9, n2=26, n3=52):
conv = (hhv(s, n1) + llv(s, n1)) / 2
base = (hhv(s, n2) + llv(s, n2)) / 2
spana = (conv + base) / 2
spanb = (hhv(s, n3) + llv(s, n3)) / 2
return DataFrame(dict(conv=conv, base=base, spana=spana.shift(n2),
spanb=spanb.shift(n2), lspan=s.close.shift(-n2)))
def ultimate(s, n1=7, n2=14, n3=28):
cs = s.close.shift(1)
bp = s.close - s.low.combine(cs, min)
tr = s.high.combine(cs, max) - s.low.combine(cs, min)
avg1 = moments.rolling_sum(bp, n1) / moments.rolling_sum(tr, n1)
avg2 = moments.rolling_sum(bp, n2) / moments.rolling_sum(tr, n2)
avg3 = moments.rolling_sum(bp, n3) / moments.rolling_sum(tr, n3)
return 100*(4*avg1 + 2*avg2 + avg3) / 7
def auto_envelope(s, nema=22, nsmooth=100, ndev=2.7):
sema = ema(s.close, nema)
mdiff = s[['high','low']].sub(sema, axis=0).abs().max(axis=1)
csize = moments.ewmstd(mdiff, nsmooth)*ndev
return DataFrame(dict(ema=sema, lenv=sema - csize, henv=sema + csize))
@series_indicator('close')
def bbands(s, n=20, ndev=2):
mavg = moments.rolling_mean(s, n)
mstd = moments.rolling_std(s, n)
hband = mavg + ndev*mstd
lband = mavg - ndev*mstd
return DataFrame(dict(ma=mavg, lband=lband, hband=hband))
def safezone(s, position, nmean=10, npen=2.0, nagg=3):
if isinstance(s, DataFrame):
s = s.low if position == 'long' else s.high
sgn = -1.0 if position == 'long' else 1.0
# Compute the average upside/downside penetration
pen = moments.rolling_apply(
sgn*s.diff(), nmean,
lambda x: x[x > 0].mean() if (x > 0).any() else 0
)
stop = s + sgn*npen*pen
return hhv(stop, nagg) if position == 'long' else llv(stop, nagg)
def sar(s, af=0.02, amax=0.2):
high, low = s.high, s.low
# Starting values
sig0, xpt0, af0 = True, high[0], af
sar = [low[0] - (high - low).std()]
for i in range(1, len(s)):
sig1, xpt1, af1 = sig0, xpt0, af0
lmin = min(low[i - 1], low[i])
lmax = max(high[i - 1], high[i])
if sig1:
sig0 = low[i] > sar[-1]
xpt0 = max(lmax, xpt1)
else:
sig0 = high[i] >= sar[-1]
xpt0 = min(lmin, xpt1)
if sig0 == sig1:
sari = sar[-1] + (xpt1 - sar[-1])*af1
af0 = min(amax, af1 + af)
if sig0:
af0 = af0 if xpt0 > xpt1 else af1
sari = min(sari, lmin)
else:
af0 = af0 if xpt0 < xpt1 else af1
sari = max(sari, lmax)
else:
af0 = af
sari = xpt0
sar.append(sari)
return Series(sar, index=s.index)
def adx(s, n=14):
cs = s.close.shift(1)
tr = s.high.combine(cs, max) - s.low.combine(cs, min)
trs = _wilder_sum(tr, n)
up = s.high - s.high.shift(1)
dn = s.low.shift(1) - s.low
pos = ((up > dn) & (up > 0)) * up
neg = ((dn > up) & (dn > 0)) * dn
dip = 100 * _wilder_sum(pos, n) / trs
din = 100 * _wilder_sum(neg, n) / trs
dx = 100 * np.abs((dip - din)/(dip + din))
adx = ema(dx, n, wilder=True)
return DataFrame(dict(adx=adx, dip=dip, din=din))
def chandelier(s, position, n=22, npen=3):
if position == 'long':
return hhv(s, n) - npen*atr(s, n)
else:
return llv(s, n) + npen*atr(s, n)
def vortex(s, n=14):
ss = s.shift(1)
tr = s.high.combine(ss.close, max) - s.low.combine(ss.close, min)
trn = moments.rolling_sum(tr, n)
vmp = np.abs(s.high - ss.low)
vmm = np.abs(s.low - ss.high)
vip = moments.rolling_sum(vmp, n) / trn
vin = moments.rolling_sum(vmm, n) / trn
return DataFrame(dict(vin=vin, vip=vip))
@series_indicator('close')
def gmma(s, nshort=[3, 5, 8, 10, 12, 15],
nlong=[30, 35, 40, 45, 50, 60]):
short = {str(n): ema(s, n) for n in nshort}
long = {str(n): ema(s, n) for n in nlong}
return DataFrame(short), DataFrame(long)
def zigzag(s, pct=5):
ut = 1 + pct / 100
dt = 1 - pct / 100
ld = s.index[0]
lp = s.close[ld]
tr = None
zzd, zzp = [ld], [lp]
for ix, ch, cl in zip(s.index, s.high, s.low):
# No initial trend
if tr is None:
if ch / lp > ut:
tr = 1
elif cl / lp < dt:
tr = -1
# Trend is up
elif tr == 1:
# New high
if ch > lp:
ld, lp = ix, ch
# Reversal
elif cl / lp < dt:
zzd.append(ld)
zzp.append(lp)
tr, ld, lp = -1, ix, cl
# Trend is down
else:
# New low
if cl < lp:
ld, lp = ix, cl
# Reversal
elif ch / lp > ut:
zzd.append(ld)
zzp.append(lp)
tr, ld, lp = 1, ix, ch
# Extrapolate the current trend
if zzd[-1] != s.index[-1]:
zzd.append(s.index[-1])
if tr is None:
zzp.append(s.close[zzd[-1]])
elif tr == 1:
zzp.append(s.high[zzd[-1]])
else:
zzp.append(s.low[zzd[-1]])
return Series(zzp, index=zzd)