-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
68 lines (52 loc) · 1.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# pip install streamlit fbprophet yfinance plotly
import streamlit as st
from datetime import date
import yfinance as yf
from prophet import Prophet
from prophet.plot import plot_plotly
from plotly import graph_objs as go
START = "2015-01-01"
TODAY = date.today().strftime("%Y-%m-%d")
st.title('Stock Forecast App')
#Stocks to choose from and dropdown to select
stocks = ('GOOG', 'AAPL', 'MSFT', 'GME', 'NVDA', 'AAPL', 'AMZN')
selected_stock = st.selectbox('Select dataset for prediction', stocks)
#Create a slider to predict how far ahead you would like to predict
n_years = st.slider('Years of prediction:', 1, 4)
period = n_years * 365
@st.cache_data
def load_data(ticker):
#Get the data of the stock from start to today
# - This downloads the data and organizes it into a "DataFrame" from Yahoo DB
data = yf.download(ticker, START, TODAY)
data.reset_index(inplace=True)
return data
data_load_state = st.text(f'Loading data from {selected_stock}...')
data = load_data(selected_stock)
data_load_state.text(f'Loading {selected_stock} data... done!')
st.subheader('Raw data')
st.write(data.tail())
# Plot raw data
def plot_raw_data():
fig = go.Figure()
fig.add_trace(go.Scatter(x=data['Date'], y=data['Open'], name="stock_open"))
fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'], name="stock_close"))
fig.layout.update(title_text='Time Series data with Rangeslider', xaxis_rangeslider_visible=True)
st.plotly_chart(fig)
plot_raw_data()
# Selecting the data to use for training
df_train = data[['Date', 'Close']]
df_train = df_train.rename(columns={"Date": "ds", "Close": "y"})
m = Prophet()
m.fit(df_train)
future = m.make_future_dataframe(periods=period)
forecast = m.predict(future)
# Show and plot forecast
st.subheader('Forecast data')
st.write(forecast.tail())
st.write(f'Forecast plot for {n_years} years')
fig1 = plot_plotly(m, forecast)
st.plotly_chart(fig1)
st.write("Forecast components")
fig2 = m.plot_components(forecast)
st.write(fig2)