-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmanual.txt
66 lines (48 loc) · 1.4 KB
/
manual.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
0. Libraries and download links
Pandas
https://pandas.pydata.org/pandas-docs/stable/getting_started/index.html
Matplotlib
https://matplotlib.org/users/installing.html
Numpy
https://numpy.org/install/
Scikit-learn
https://scikit-learn.org/stable/install.html
Pytorch
https://pytorch.org
1. Preprocessing
python preprocess.py
preprocess the result
2. Neural Network
python neural_network.py
Comment line 680-689 to avoid running experiments with different training sample size to save time.
3. SVM
Langauge: Python3.7
Command to run:
Since hyperparameter tuning takes hours, there is a way to skip it.
(1) Running without hyperparameter tuning (gamma = 0.01, C = 100)
python3 svm.py 1
(2) Running with hyperparameter tuning
python3 svm.py 0
4. Adaptive Boosted Decision Tree
python AdaBoostTree.py
produce the main result
python TuningTree.py
find the best combination of hyperparameters.
5. Data files
data/training.csv
Raw data
data/trainingSet.csv
processed training data
data/testingSet.py
processed testing data
6. Plots
plots/plots_raw
All the features of raw data
plots/plots_raw_log
All the features of raw data with log y axis
plots/plots_preprocessing
All the features of preprocessed data
plots/SVM
SVM results
plots/AdaBoostTree
AdaBoostedTree results