-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPet_detector.py
336 lines (262 loc) · 12.6 KB
/
Pet_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
######## Raspberry Pi Pet Detector Camera using TensorFlow Object Detection API #########
#
# Author: Evan Juras
# Date: 10/15/18
# Description:
#
# This script implements a "pet detector" that alerts the user if a pet is
# waiting to be let inside or outside. It takes video frames from a Picamera
# or USB webcam, passes them through a TensorFlow object detection model,
# determines if a cat or dog has been detected in the image, checks the location
# of the cat or dog in the frame, and texts the user's phone if a cat or dog is
# detected in the appropriate location.
#
# The framework is based off the Object_detection_picamera.py script located here:
# https://github.com/EdjeElectronics/TensorFlow-Object-Detection-on-the-Raspberry-Pi/blob/master/Object_detection_picamera.py
#
# Sending a text requires setting up a Twilio account (free trials are available).
# Here is a good tutorial for using Twilio:
# https://www.twilio.com/docs/sms/quickstart/python
# Import packages
import os
import cv2
import numpy as np
from picamera.array import PiRGBArray
from picamera import PiCamera
import tensorflow as tf
import argparse
import sys
# Set up Twilio
from twilio.rest import Client
# Twilio SID, authentication token, my phone number, and the Twilio phone number
# are stored as environment variables on my Pi so people can't see them
account_sid = os.environ['TWILIO_ACCOUNT_SID']
auth_token = os.environ['TWILIO_AUTH_TOKEN']
my_number = os.environ['MY_DIGITS']
twilio_number = os.environ['TWILIO_DIGITS']
client = Client(account_sid,auth_token)
# Set up camera constants
IM_WIDTH = 1280
IM_HEIGHT = 720
# Select camera type (if user enters --usbcam when calling this script,
# a USB webcam will be used)
camera_type = 'picamera'
parser = argparse.ArgumentParser()
parser.add_argument('--usbcam', help='Use a USB webcam instead of picamera',
action='store_true')
args = parser.parse_args()
if args.usbcam:
camera_type = 'usb'
#### Initialize TensorFlow model ####
# This is needed since the working directory is the object_detection folder.
sys.path.append('..')
# Import utilites
from utils import label_map_util
from utils import visualization_utils as vis_util
# Name of the directory containing the object detection module we're using
MODEL_NAME = 'ssdlite_mobilenet_v2_coco_2018_05_09'
# Grab path to current working directory
CWD_PATH = os.getcwd()
# Path to frozen detection graph .pb file, which contains the model that is used
# for object detection.
PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,'data','mscoco_label_map.pbtxt')
# Number of classes the object detector can identify
NUM_CLASSES = 90
## Load the label map.
# Label maps map indices to category names, so that when the convolution
# network predicts `5`, we know that this corresponds to `airplane`.
# Here we use internal utility functions, but anything that returns a
# dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Load the Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
# Define input and output tensors (i.e. data) for the object detection classifier
# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
#### Initialize other parameters ####
# Initialize frame rate calculation
frame_rate_calc = 1
freq = cv2.getTickFrequency()
font = cv2.FONT_HERSHEY_SIMPLEX
# Define inside box coordinates (top left and bottom right)
TL_inside = (int(IM_WIDTH*0.1),int(IM_HEIGHT*0.35))
BR_inside = (int(IM_WIDTH*0.45),int(IM_HEIGHT-5))
# Define outside box coordinates (top left and bottom right)
TL_outside = (int(IM_WIDTH*0.46),int(IM_HEIGHT*0.25))
BR_outside = (int(IM_WIDTH*0.8),int(IM_HEIGHT*.85))
# Initialize control variables used for pet detector
detected_inside = False
detected_outside = False
inside_counter = 0
outside_counter = 0
pause = 0
pause_counter = 0
#### Pet detection function ####
# This function contains the code to detect a pet, determine if it's
# inside or outside, and send a text to the user's phone.
def pet_detector(frame):
# Use globals for the control variables so they retain their value after function exits
global detected_inside, detected_outside
global inside_counter, outside_counter
global pause, pause_counter
frame_expanded = np.expand_dims(frame, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: frame_expanded})
# Draw the results of the detection (aka 'visulaize the results')
vis_util.visualize_boxes_and_labels_on_image_array(
frame,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8,
min_score_thresh=0.40)
# Draw boxes defining "outside" and "inside" locations.
cv2.rectangle(frame,TL_outside,BR_outside,(255,20,20),3)
cv2.putText(frame,"Outside box",(TL_outside[0]+10,TL_outside[1]-10),font,1,(255,20,255),3,cv2.LINE_AA)
cv2.rectangle(frame,TL_inside,BR_inside,(20,20,255),3)
cv2.putText(frame,"Inside box",(TL_inside[0]+10,TL_inside[1]-10),font,1,(20,255,255),3,cv2.LINE_AA)
# Check the class of the top detected object by looking at classes[0][0].
# If the top detected object is a cat (17) or a dog (18) (or a teddy bear (88) for test purposes),
# find its center coordinates by looking at the boxes[0][0] variable.
# boxes[0][0] variable holds coordinates of detected objects as (ymin, xmin, ymax, xmax)
if (((int(classes[0][0]) == 17) or (int(classes[0][0] == 18) or (int(classes[0][0]) == 88))) and (pause == 0)):
x = int(((boxes[0][0][1]+boxes[0][0][3])/2)*IM_WIDTH)
y = int(((boxes[0][0][0]+boxes[0][0][2])/2)*IM_HEIGHT)
# Draw a circle at center of object
cv2.circle(frame,(x,y), 5, (75,13,180), -1)
# If object is in inside box, increment inside counter variable
if ((x > TL_inside[0]) and (x < BR_inside[0]) and (y > TL_inside[1]) and (y < BR_inside[1])):
inside_counter = inside_counter + 1
# If object is in outside box, increment outside counter variable
if ((x > TL_outside[0]) and (x < BR_outside[0]) and (y > TL_outside[1]) and (y < BR_outside[1])):
outside_counter = outside_counter + 1
# If pet has been detected inside for more than 10 frames, set detected_inside flag
# and send a text to the phone.
if inside_counter > 10:
detected_inside = True
message = client.messages.create(
body = 'Your pet wants outside!',
from_=twilio_number,
to=my_number
)
inside_counter = 0
outside_counter = 0
# Pause pet detection by setting "pause" flag
pause = 1
# If pet has been detected outside for more than 10 frames, set detected_outside flag
# and send a text to the phone.
if outside_counter > 10:
detected_outside = True
message = client.messages.create(
body = 'Your pet wants inside!',
from_=twilio_number,
to=my_number
)
inside_counter = 0
outside_counter = 0
# Pause pet detection by setting "pause" flag
pause = 1
# If pause flag is set, draw message on screen.
if pause == 1:
if detected_inside == True:
cv2.putText(frame,'Pet wants outside!',(int(IM_WIDTH*.1),int(IM_HEIGHT*.5)),font,3,(0,0,0),7,cv2.LINE_AA)
cv2.putText(frame,'Pet wants outside!',(int(IM_WIDTH*.1),int(IM_HEIGHT*.5)),font,3,(95,176,23),5,cv2.LINE_AA)
if detected_outside == True:
cv2.putText(frame,'Pet wants inside!',(int(IM_WIDTH*.1),int(IM_HEIGHT*.5)),font,3,(0,0,0),7,cv2.LINE_AA)
cv2.putText(frame,'Pet wants inside!',(int(IM_WIDTH*.1),int(IM_HEIGHT*.5)),font,3,(95,176,23),5,cv2.LINE_AA)
# Increment pause counter until it reaches 30 (for a framerate of 1.5 FPS, this is about 20 seconds),
# then unpause the application (set pause flag to 0).
pause_counter = pause_counter + 1
if pause_counter > 30:
pause = 0
pause_counter = 0
detected_inside = False
detected_outside = False
# Draw counter info
cv2.putText(frame,'Detection counter: ' + str(max(inside_counter,outside_counter)),(10,100),font,0.5,(255,255,0),1,cv2.LINE_AA)
cv2.putText(frame,'Pause counter: ' + str(pause_counter),(10,150),font,0.5,(255,255,0),1,cv2.LINE_AA)
return frame
#### Initialize camera and perform object detection ####
# The camera has to be set up and used differently depending on if it's a
# Picamera or USB webcam.
### Picamera ###
if camera_type == 'picamera':
# Initialize Picamera and grab reference to the raw capture
camera = PiCamera()
camera.resolution = (IM_WIDTH,IM_HEIGHT)
camera.framerate = 10
rawCapture = PiRGBArray(camera, size=(IM_WIDTH,IM_HEIGHT))
rawCapture.truncate(0)
# Continuously capture frames and perform object detection on them
for frame1 in camera.capture_continuous(rawCapture, format="bgr",use_video_port=True):
t1 = cv2.getTickCount()
# Acquire frame and expand frame dimensions to have shape: [1, None, None, 3]
# i.e. a single-column array, where each item in the column has the pixel RGB value
frame = frame1.array
frame.setflags(write=1)
# Pass frame into pet detection function
frame = pet_detector(frame)
# Draw FPS
cv2.putText(frame,"FPS: {0:.2f}".format(frame_rate_calc),(30,50),font,1,(255,255,0),2,cv2.LINE_AA)
# All the results have been drawn on the frame, so it's time to display it.
cv2.imshow('Object detector', frame)
# FPS calculation
t2 = cv2.getTickCount()
time1 = (t2-t1)/freq
frame_rate_calc = 1/time1
# Press 'q' to quit
if cv2.waitKey(1) == ord('q'):
break
rawCapture.truncate(0)
camera.close()
### USB webcam ###
elif camera_type == 'usb':
# Initialize USB webcam feed
camera = cv2.VideoCapture(0)
ret = camera.set(3,IM_WIDTH)
ret = camera.set(4,IM_HEIGHT)
# Continuously capture frames and perform object detection on them
while(True):
t1 = cv2.getTickCount()
# Acquire frame and expand frame dimensions to have shape: [1, None, None, 3]
# i.e. a single-column array, where each item in the column has the pixel RGB value
ret, frame = camera.read()
# Pass frame into pet detection function
frame = pet_detector(frame)
# Draw FPS
cv2.putText(frame,"FPS: {0:.2f}".format(frame_rate_calc),(30,50),font,1,(255,255,0),2,cv2.LINE_AA)
# All the results have been drawn on the frame, so it's time to display it.
cv2.imshow('Object detector', frame)
# FPS calculation
t2 = cv2.getTickCount()
time1 = (t2-t1)/freq
frame_rate_calc = 1/time1
# Press 'q' to quit
if cv2.waitKey(1) == ord('q'):
break
camera.release()
cv2.destroyAllWindows()