forked from adityathakker/ner-lstm-crf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_utils.py
195 lines (154 loc) · 5.67 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
import os
UNK = "$UNK$"
NUM = "$NUM$"
NONE = "O"
# Thanks to Guillaume Genthial (github.com/guillaumegenthial) for this class
class CoNLLDataset(object):
def __init__(self,
filename,
processing_word=None,
processing_tag=None,
max_iter=None):
self.filename = filename
self.processing_word = processing_word
self.processing_tag = processing_tag
self.max_iter = max_iter
self.length = None
def __iter__(self):
niter = 0
with open(self.filename) as f:
words, tags = [], []
for line in f:
line = line.strip()
if len(line) == 0 or line.startswith("-DOCSTART-"):
if len(words) != 0:
niter += 1
if self.max_iter is not None and niter > self.max_iter:
break
yield words, tags
words, tags = [], []
else:
word, _, _, tag = line.split(' ')
if self.processing_word is not None:
word = self.processing_word(word)
if self.processing_tag is not None:
tag = self.processing_tag(tag)
words += [word]
tags += [tag]
def __len__(self):
if self.length is None:
self.length = 0
for _ in self:
self.length += 1
return self.length
def get_vocabs(datasets):
print("Building vocab...")
vocab_words = set()
vocab_tags = set()
for dataset in datasets:
for words, tags in dataset:
vocab_words.update(words)
vocab_tags.update(tags)
print("- done. {} tokens".format(len(vocab_words)))
return vocab_words, vocab_tags
def get_char_vocab(dataset):
vocab_char = set()
for words, _ in dataset:
for word in words:
vocab_char.update(word)
return vocab_char
def get_glove_vocab(filename):
print("Building vocab...")
vocab = set()
with open(filename) as f:
for line in f:
word = line.strip().split(' ')[0]
vocab.add(word)
print("- done. {} tokens".format(len(vocab)))
return vocab
def write_vocab(vocab, filename):
print("Writing vocab...")
with open(filename, "w") as f:
for i, word in enumerate(vocab):
if i != len(vocab) - 1:
f.write("{}\n".format(word))
else:
f.write(word)
print("- done. {} tokens".format(len(vocab)))
def load_vocab(filename):
d = dict()
with open(filename) as f:
for idx, word in enumerate(f):
word = word.strip()
d[word] = idx
return d
def export_trimmed_glove_vectors(vocab, glove_filename, trimmed_filename, dim):
embeddings = np.zeros([len(vocab), dim])
with open(glove_filename) as f:
for line in f:
line = line.strip().split(' ')
word = line[0]
embedding = [float(x) for x in line[1:]]
if word in vocab:
word_idx = vocab[word]
embeddings[word_idx] = np.asarray(embedding)
np.savez_compressed(trimmed_filename, embeddings=embeddings)
def get_trimmed_glove_vectors(filename):
with np.load(filename) as data:
return data["embeddings"]
def get_processing_word(vocab_words=None, vocab_chars=None):
def f(word):
if vocab_chars is not None:
char_ids = []
for char in word:
# ignore chars out of vocabulary
if char in vocab_chars:
char_ids += [vocab_chars[char]]
if vocab_words is not None:
if word in vocab_words:
word_id = vocab_words[word]
else:
word_id = vocab_words[UNK]
if vocab_chars is not None:
return char_ids, word_id
else:
return word_id
return f
def _pad_sequences(sequences, pad_tok, max_length):
sequence_padded, sequence_length = [], []
for seq in sequences:
seq = list(seq)
seq_ = seq[:max_length] + [pad_tok] * max(max_length - len(seq), 0)
sequence_padded += [seq_]
sequence_length += [min(len(seq), max_length)]
return sequence_padded, sequence_length
def pad_sequences(sequences, pad_tok, nlevels=1):
if nlevels == 1:
max_length = max(map(lambda x: len(x), sequences))
sequence_padded, sequence_length = _pad_sequences(sequences,
pad_tok, max_length)
elif nlevels == 2:
max_length_word = max([max(map(lambda x: len(x), seq)) for seq in sequences])
sequence_padded, sequence_length = [], []
for seq in sequences:
sp, sl = _pad_sequences(seq, pad_tok, max_length_word)
sequence_padded += [sp]
sequence_length += [sl]
max_length_sentence = max(map(lambda x: len(x), sequences))
sequence_padded, _ = _pad_sequences(sequence_padded, [pad_tok] * max_length_word,
max_length_sentence)
sequence_length, _ = _pad_sequences(sequence_length, 0, max_length_sentence)
return sequence_padded, sequence_length
def minibatches(data, minibatch_size):
x_batch, y_batch = [], []
for (x, y) in data:
if len(x_batch) == minibatch_size:
yield x_batch, y_batch
x_batch, y_batch = [], []
if type(x[0]) == tuple:
x = zip(*x)
x_batch += [x]
y_batch += [y]
if len(x_batch) != 0:
yield x_batch, y_batch