diff --git a/research.html b/research.html index 6eb9420..dfbc0dd 100644 --- a/research.html +++ b/research.html @@ -94,7 +94,7 @@
+ A Variational Framework for Estimating Continuous Treatment Effects with Measurement Error. [PDF]
+ E. Gao, H. Bondell, W. Huang, and M. Gong.
+ In ICLR, 2024.
+
+ Identifiable Latent Polynomial Causal Models through the Lens of Change. [PDF]
+ Y. Liu, Z. Zhang, D. Gong, M. Gong, B. Huang, A. Hengel, K. Zhang, and J. Shi.
+ In ICLR, 2024.
+
+ Causal Discovery with Mixed Linear and Nonlinear Additive Noise Models: A Scalable Approach. [PDF]
+ W. Liu, B. Huang, E. Gao, Q. Ke, H. Bondell, and M. Gong.
+ In CLeaR, 2024.
+
+ Generator Identification for Linear SDEs with Additive and Multiplicative Noise. [PDF]
+ Y. Wang, X. Geng, W. Huang, B. Huang, M. Gong.
+ In NeurIPS, 2023.
+
+ FedDAG: Federated DAG Structure Learning. [PDF][CODE]
+ E. Gao, J. Chen, L. Shen, T. Liu, M. Gong, H. Bondell.
+ In TMLR, 2023.
+
+ MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models. [PDF][CODE]
+ E. Gao*, I. Ng*, M. Gong, L. Shen, W. Huang, T. Liu, K. Zhang, H. Bondell.
+ In NeurIPS, 2022.
+
+ Truncated Matrix Power Iteration for Differentiable DAG Learning. [PDF]
+ Z. Zhang, I. Ng, D. Gong, Y. Liu, E.M. Abbasnejad, M. Gong, K. Zhang, J.Q. Shi.
+ In NeurIPS, 2022.
+
+ Causal Discovery from Non-Identical Variable Sets. [PDF]
+ B. Huang, K. Zhang, M. Gong, and C. Glymour.
+ In AAAI, 2020.
+
+ Likelihood-Free Overcomplete ICA and Applications in Causal Discovery. [PDF][CODE]
+ C. Ding, M. Gong, K. Zhang, and D. Tao.
+ In NeurIPS, 2019. (Spotlight, acceptance rate 2.4%)
+
+ Specific and Shared Causal Relation Modeling and Mechanism-based Clustering. [PDF]
+ B. Huang, K. Zhang, P. Xie, M. Gong, E. P. Xing, and C. Glymour.
+ In NeurIPS, 2019.
+
+ Discovery and Forecasting in Nonstationary Environments with State-Space Models. [PDF][SUPP][CODE]
+ B. Huang, K. Zhang, M. Gong, and C. Glymour.
+ In ICML, 2019.
+
+ Causal Discovery with Linear Non-Gaussian Models under Measurement Error: Structural Identifiability Results. [PDF]
+ K. Zhang, M. Gong, J. Ramsey, K. Batmanghelich, P. Spirtes, and C. Glymour.
+ In UAI, 2018. (Oral, acceptance rate 8.9%)
+
+ Causal Discovery from Temporally Aggregated Time Series. [PDF]
+ M. Gong, K. Zhang, B. Schölkopf, C. Glymour, and D. Tao.
+ In UAI, 2017.
+
+ Causal Inference by Identification of Vector Autoregressive Processes with Hidden Components. [PDF][CODE]
+ P. Geiger, K. Zhang, M. Gong, B. Schölkopf, and D. Janzing.
+ In ICML, 2015.
+
+ Discovering Temporal Causal Relations from Subsampled Data. [PDF][CODE]
+ M. Gong*, K. Zhang*, B. Schölkopf, D. Tao, and P. Geiger.
+ In ICML, 2015.
+
- A Variational Framework for Estimating Continuous Treatment Effects with Measurement Error. [PDF]
- E. Gao, H. Bondell, W. Huang, and M. Gong.
- In ICLR, 2024.
-
- Identifiable Latent Polynomial Causal Models through the Lens of Change. [PDF]
- Y. Liu, Z. Zhang, D. Gong, M. Gong, B. Huang, A. Hengel, K. Zhang, and J. Shi.
- In ICLR, 2024.
-
- Causal Discovery with Mixed Linear and Nonlinear Additive Noise Models: A Scalable Approach. [PDF]
- W. Liu, B. Huang, E. Gao, Q. Ke, H. Bondell, and M. Gong.
- In CLeaR, 2024.
-
- Generator Identification for Linear SDEs with Additive and Multiplicative Noise. [PDF]
- Y. Wang, X. Geng, W. Huang, B. Huang, M. Gong.
- In NeurIPS, 2023.
-
- FedDAG: Federated DAG Structure Learning. [PDF][CODE]
- E. Gao, J. Chen, L. Shen, T. Liu, M. Gong, H. Bondell.
- In TMLR, 2023.
-
- MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models. [PDF][CODE]
- E. Gao*, I. Ng*, M. Gong, L. Shen, W. Huang, T. Liu, K. Zhang, H. Bondell.
- In NeurIPS, 2022.
-
- Truncated Matrix Power Iteration for Differentiable DAG Learning. [PDF]
- Z. Zhang, I. Ng, D. Gong, Y. Liu, E.M. Abbasnejad, M. Gong, K. Zhang, J.Q. Shi.
- In NeurIPS, 2022.
-
- Causal Discovery from Non-Identical Variable Sets. [PDF]
- B. Huang, K. Zhang, M. Gong, and C. Glymour.
- In AAAI, 2020.
-
- Likelihood-Free Overcomplete ICA and Applications in Causal Discovery. [PDF][CODE]
- C. Ding, M. Gong, K. Zhang, and D. Tao.
- In NeurIPS, 2019. (Spotlight, acceptance rate 2.4%)
-
- Specific and Shared Causal Relation Modeling and Mechanism-based Clustering. [PDF]
- B. Huang, K. Zhang, P. Xie, M. Gong, E. P. Xing, and C. Glymour.
- In NeurIPS, 2019.
-
- Discovery and Forecasting in Nonstationary Environments with State-Space Models. [PDF][SUPP][CODE]
- B. Huang, K. Zhang, M. Gong, and C. Glymour.
- In ICML, 2019.
-
- Causal Discovery with Linear Non-Gaussian Models under Measurement Error: Structural Identifiability Results. [PDF]
- K. Zhang, M. Gong, J. Ramsey, K. Batmanghelich, P. Spirtes, and C. Glymour.
- In UAI, 2018. (Oral, acceptance rate 8.9%)
-
- Causal Discovery from Temporally Aggregated Time Series. [PDF]
- M. Gong, K. Zhang, B. Schölkopf, C. Glymour, and D. Tao.
- In UAI, 2017.
-
- Causal Inference by Identification of Vector Autoregressive Processes with Hidden Components. [PDF][CODE]
- P. Geiger, K. Zhang, M. Gong, B. Schölkopf, and D. Janzing.
- In ICML, 2015.
-
- Discovering Temporal Causal Relations from Subsampled Data. [PDF][CODE]
- M. Gong*, K. Zhang*, B. Schölkopf, D. Tao, and P. Geiger.
- In ICML, 2015.
-
+ HuTuMotion: Human-Tuned Navigation of Latent Motion Diffusion Models with Minimal Feedback. [PDF]
+ G. Han, S. Huang, M. Gong, and J. Tang.
+ In AAAI, 2024.
+
+ Freetalker: Controllable Speech and Text-Driven Gesture Generation Based on Diffusion Models for Enhanced Speaker Naturalness. [PDF]
+ S. Yang, Z. Xu, H. Xue, Y. Cheng, S. Huang, M. Gong, and Z. Wu.
+ In ICASSP, 2024.
+
+ Semi-Implicit Denoising Diffusion Models (SIDDMs). [PDF]
+ Y. Xu, M. Gong, S. Xie, W. Wei, M. Grundmann, K. Batmanghelich*, T. Hou*.
+ In NeurIPS, 2023.
+ High-quality image generation in a few diffusion steps, an extension to text-to-image generation is here.
+
+ Unpaired Image-to-Image Translation with Shortest Path Regularization. [PDF]
+ S. Xie, Y. Xu, M. Gong, and K. Zhang.
+ In CVPR, 2023.
+
+ Multi-Domain Image Generation and Translation with Identifiability Guarantees. [PDF][CODE]
+ S. Xie, L. Kong, M. Gong, and K. Zhang.
+ In ICLR, 2023. (Spotlight)
+
+ Alleviating Semantics Distortion in Unsupervised Low-Level Image-to-Image Translation via Structure Consistency Constraint. [PDF] [CODE]
+ J. Guo, J. Li, H. Fu, M. Gong, K. Zhang, D. Tao.
+ In CVPR, 2022.
+
+ Maximum Spatial Perturbation Consistency for Unpaired Image-to-Image Translation. [PDF] [CODE]
+ Y. Xu, S. Xie, W. Wu, K. Zhang, M. Gong*, K. Batmanghelich*.
+ In CVPR, 2022.
+
+ Few-Shot Font Generation by Learning Fine-Grained Local Styles. [PDF]
+ L. Tang, Y. Cai, J. Liu, Z. Hong, M. Gong, M. Fan, J. Han, J. L, E. Ding, J. Wang.
+ In CVPR, 2022.
+
+ Hierarchical Amortized GAN for 3D High Resolution Medical Image Synthesis. [PDF][CODE]
+ L. Sun, J. Chen, Y. Xu, M. Gong, K. Yu, K. Batmanghelich
+ IEEE JBHI, (2022).
+
+ Unaligned Image-to-Image Translation by Learning to Reweight. [PDF] [CODE]
+ S. Xie, M. Gong, Y. Xu, and K. Zhang.
+ In ICCV, 2021.
+
+ Twin Auxiliary Classifiers GAN. [PDF][CODE]
+ M. Gong*, Y. Xu*, C. Li, K. Zhang, and K. Batmanghelich.
+ In NeurIPS, 2019. (Spotlight, acceptance rate 2.4%)
+
+ Geometry-Consistent Adversarial Networks for Unsupervised Domain Mapping. [PDF][CODE]
+ H. Fu*, M. Gong*, C. Wang, K. Batmanghelich, K. Zhang, and D. Tao.
+ In CVPR, 2019. (best paper finalist, top 1%)
+
@@ -275,69 +339,4 @@
- HuTuMotion: Human-Tuned Navigation of Latent Motion Diffusion Models with Minimal Feedback. [PDF]
- G. Han, S. Huang, M. Gong, and J. Tang.
- In AAAI, 2024.
-
- Freetalker: Controllable Speech and Text-Driven Gesture Generation Based on Diffusion Models for Enhanced Speaker Naturalness. [PDF]
- S. Yang, Z. Xu, H. Xue, Y. Cheng, S. Huang, M. Gong, and Z. Wu.
- In ICASSP, 2024.
-
- Semi-Implicit Denoising Diffusion Models (SIDDMs). [PDF]
- Y. Xu, M. Gong, S. Xie, W. Wei, M. Grundmann, K. Batmanghelich*, T. Hou*.
- In NeurIPS, 2023.
- High-quality image generation in a few diffusion steps, an extension to text-to-image generation is here.
-
- Unpaired Image-to-Image Translation with Shortest Path Regularization. [PDF]
- S. Xie, Y. Xu, M. Gong, and K. Zhang.
- In CVPR, 2023.
-
- Multi-Domain Image Generation and Translation with Identifiability Guarantees. [PDF][CODE]
- S. Xie, L. Kong, M. Gong, and K. Zhang.
- In ICLR, 2023. (Spotlight)
-
- Alleviating Semantics Distortion in Unsupervised Low-Level Image-to-Image Translation via Structure Consistency Constraint. [PDF] [CODE]
- J. Guo, J. Li, H. Fu, M. Gong, K. Zhang, D. Tao.
- In CVPR, 2022.
-
- Maximum Spatial Perturbation Consistency for Unpaired Image-to-Image Translation. [PDF] [CODE]
- Y. Xu, S. Xie, W. Wu, K. Zhang, M. Gong*, K. Batmanghelich*.
- In CVPR, 2022.
-
- Few-Shot Font Generation by Learning Fine-Grained Local Styles. [PDF]
- L. Tang, Y. Cai, J. Liu, Z. Hong, M. Gong, M. Fan, J. Han, J. L, E. Ding, J. Wang.
- In CVPR, 2022.
-
- Hierarchical Amortized GAN for 3D High Resolution Medical Image Synthesis. [PDF][CODE]
- L. Sun, J. Chen, Y. Xu, M. Gong, K. Yu, K. Batmanghelich
- IEEE JBHI, (2022).
-
- Unaligned Image-to-Image Translation by Learning to Reweight. [PDF] [CODE]
- S. Xie, M. Gong, Y. Xu, and K. Zhang.
- In ICCV, 2021.
-
- Twin Auxiliary Classifiers GAN. [PDF][CODE]
- M. Gong*, Y. Xu*, C. Li, K. Zhang, and K. Batmanghelich.
- In NeurIPS, 2019. (Spotlight, acceptance rate 2.4%)
-
- Geometry-Consistent Adversarial Networks for Unsupervised Domain Mapping. [PDF][CODE]
- H. Fu*, M. Gong*, C. Wang, K. Batmanghelich, K. Zhang, and D. Tao.
- In CVPR, 2019. (best paper finalist, top 1%)
-