-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_mrcnn.py
251 lines (200 loc) · 9.92 KB
/
train_mrcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Sample code from the TorchVision 0.3 Object Detection Finetuning Tutorial
# http://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
import os
import numpy as np
import torch
import random
import json
import argparse
from PIL import Image
import cv2
from alfworld.agents.detector.engine import train_one_epoch, evaluate
import alfworld.agents.detector.utils as utils
import torchvision
import alfworld.agents.detector.transforms as T
from alfworld.agents.detector.mrcnn import get_model_instance_segmentation, load_pretrained_model
import sys
import alfworld.gen.constants as constants
MIN_PIXELS = 100
OBJECTS_DETECTOR = constants.OBJECTS_DETECTOR
STATIC_RECEPTACLES = constants.STATIC_RECEPTACLES
ALL_DETECTOR = constants.ALL_DETECTOR
def get_object_classes(object_type):
if object_type == "objects":
return OBJECTS_DETECTOR
elif object_type == "receptacles":
return STATIC_RECEPTACLES
else:
return ALL_DETECTOR
class AlfredDataset(object):
def __init__(self, root, transforms, args):
self.root = root
self.transforms = transforms
self.args = args
self.object_classes = get_object_classes(args.object_types)
# load all image files, sorting them to
# ensure that they are aligned
self.get_data_files(root, balance_scenes=args.balance_scenes)
def get_data_files(self, root, balance_scenes=False):
if balance_scenes:
kitchen_path = os.path.join(root, 'kitchen', 'images')
living_path = os.path.join(root, 'living', 'images')
bedroom_path = os.path.join(root, 'bedroom', 'images')
bathroom_path = os.path.join(root, 'bathroom', 'images')
kitchen = list(sorted(os.listdir(kitchen_path)))
living = list(sorted(os.listdir(living_path)))
bedroom = list(sorted(os.listdir(bedroom_path)))
bathroom = list(sorted(os.listdir(bathroom_path)))
min_size = min(len(kitchen), len(living), len(bedroom), len(bathroom))
kitchen = [os.path.join(kitchen_path, f) for f in random.sample(kitchen, int(min_size*self.args.kitchen_factor))]
living = [os.path.join(living_path, f) for f in random.sample(living, int(min_size*self.args.living_factor))]
bedroom = [os.path.join(bedroom_path, f) for f in random.sample(bedroom, int(min_size*self.args.bedroom_factor))]
bathroom = [os.path.join(bathroom_path, f) for f in random.sample(bathroom, int(min_size*self.args.bathroom_factor))]
self.imgs = kitchen + living + bedroom + bathroom
self.masks = [f.replace("images", "masks") for f in self.imgs]
self.metas = [f.replace("images", "meta").replace(".png", ".json") for f in self.imgs]
else:
self.imgs = [os.path.join(root, "images", f) for f in list(sorted(os.listdir(os.path.join(root, "images"))))]
self.masks = [os.path.join(root, "masks", f) for f in list(sorted(os.listdir(os.path.join(root, "masks"))))]
self.metas = [os.path.join(root, "meta", f) for f in list(sorted(os.listdir(os.path.join(root, "meta"))))]
def __getitem__(self, idx):
# load images ad masks
img_path = self.imgs[idx]
mask_path = self.masks[idx]
meta_path = self.metas[idx]
# print("Opening: %s" % (self.imgs[idx]))
with open(meta_path, 'r') as f:
color_to_object = json.load(f)
img = Image.open(img_path).convert("RGB")
# note that we haven't converted the mask to RGB,
# because each color corresponds to a different instance
# with 0 being background
mask = Image.open(mask_path)
mask = np.array(mask)
im_width, im_height = mask.shape[0], mask.shape[1]
seg_colors = np.unique(mask.reshape(im_height*im_height, 3), axis=0)
masks, boxes, labels = [], [], []
for color in seg_colors:
color_str = str(tuple(color[::-1]))
if color_str in color_to_object:
object_id = color_to_object[color_str]
object_class = object_id.split("|", 1)[0] if "|" in object_id else ""
if "Basin" in object_id:
object_class += "Basin"
if object_class in self.object_classes:
smask = np.all(mask == color, axis=2)
pos = np.where(smask)
num_pixels = len(pos[0])
xmin = np.min(pos[1])
xmax = np.max(pos[1])
ymin = np.min(pos[0])
ymax = np.max(pos[0])
# skip if not sufficient pixels
# if num_pixels < MIN_PIXELS:
if (xmax-xmin)*(ymax-ymin) < MIN_PIXELS:
continue
class_idx = self.object_classes.index(object_class)
masks.append(smask)
boxes.append([xmin, ymin, xmax, ymax])
labels.append(class_idx)
if self.args.debug:
disp_img = np.array(img)
cv2.rectangle(disp_img, (xmin, ymin), (xmax, ymax), color=(0, 255, 0), thickness=2)
cv2.putText(disp_img, object_class, (xmin, ymin), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=2)
sg = np.uint8(smask[:, :, np.newaxis])*255
print(xmax-xmin, ymax-ymin, num_pixels)
cv2.imshow("img", np.array(disp_img))
cv2.imshow("sg", sg)
cv2.waitKey(0)
if len(boxes) == 0:
return None, None
iscrowd = torch.zeros(len(masks), dtype=torch.int64)
boxes = torch.as_tensor(boxes, dtype=torch.float32)
labels = torch.as_tensor(labels, dtype=torch.int64)
masks = torch.as_tensor(masks, dtype=torch.uint8)
image_id = torch.tensor([idx])
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
target = {}
target["boxes"] = boxes
target["labels"] = labels
target["masks"] = masks
target["image_id"] = image_id
target["area"] = area
target["iscrowd"] = iscrowd
if self.transforms is not None:
img, target = self.transforms(img, target)
return img, target
def __len__(self):
return len(self.imgs)
def get_transform(train):
transforms = []
transforms.append(T.ToTensor())
if train:
transforms.append(T.RandomHorizontalFlip(0.5))
return T.Compose(transforms)
def main(args):
# train on the GPU or on the CPU, if a GPU is not available
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# our dataset has two classes only - background and person
num_classes = len(get_object_classes(args.object_types))+1
# use our dataset and defined transformations
dataset = AlfredDataset(args.data_path, get_transform(train=True), args)
dataset_test = AlfredDataset(args.data_path, get_transform(train=False), args)
# split the dataset in train and test set
# indices = torch.randperm(len(dataset)).tolist()
indices = list(range(len(dataset)))
dataset = torch.utils.data.Subset(dataset, indices[:-4000])
dataset_test = torch.utils.data.Subset(dataset_test, indices[-4000:])
# define training and validation data loaders
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=args.batch_size, shuffle=True, num_workers=4,
collate_fn=utils.collate_fn)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=args.batch_size, shuffle=False, num_workers=4,
collate_fn=utils.collate_fn)
# get the model using our helper function
if args.load_model:
model = load_pretrained_model(args.load_model)
else:
model = get_model_instance_segmentation(num_classes)
# move model to the right device
model.to(device)
# construct an optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=args.lr,
momentum=0.9, weight_decay=0.0005)
# and a learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=3,
gamma=0.1)
# let's train it for 10 epochs
num_epochs = 10
for epoch in range(num_epochs):
# train for one epoch, printing every 10 iterations
train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=10)
# update the learning rate
lr_scheduler.step()
# # evaluate on the test dataset
# evaluate(model, data_loader_test, device=device)
# save model
model_path = os.path.join(args.save_path, "%s_%03d.pth" % (args.save_name, epoch))
torch.save(model.state_dict(), model_path)
print("Saving %s" % model_path)
print("Done training!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_path", type=str, default="data/")
parser.add_argument("--save_path", type=str, default="data/")
parser.add_argument("--object_types", choices=["objects", "receptacles", "all"], default="all")
parser.add_argument("--save_name", type=str, default="mrcnn_alfred_objects")
parser.add_argument("--load_model", type=str, default="")
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--lr", type=float, default=0.005)
parser.add_argument("--balance_scenes", action='store_true')
parser.add_argument("--kitchen_factor", type=float, default=1.0)
parser.add_argument("--living_factor", type=float, default=1.0)
parser.add_argument("--bedroom_factor", type=float, default=1.0)
parser.add_argument("--bathroom_factor", type=float, default=1.0)
parser.add_argument("--debug", action='store_true')
args = parser.parse_args()
main(args)