-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata_utils.py
397 lines (336 loc) · 17.1 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for downloading disc_data from WMT, tokenizing, vocabularies."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import re
import sys
import tarfile
from six.moves import urllib
from tensorflow.python.platform import gfile
import tensorflow as tf
# Special vocabulary symbols - we always put them at the start.
_PAD = "_PAD"
_GO = "_GO"
_EOS = "_EOS"
_UNK = "_UNK"
_START_VOCAB = [_PAD, _GO, _EOS, _UNK]
PAD_ID = 0
GO_ID = 1
EOS_ID = 2
UNK_ID = 3
# Regular expressions used to tokenize.
_WORD_SPLIT = re.compile("([.,!?\"':;)(])")
_DIGIT_RE = re.compile(r"\d{3,}")
def basic_tokenizer(sentence):
"""Very basic tokenizer: split the sentence into a list of tokens."""
words = []
for space_separated_fragment in sentence.strip().split():
words.extend(re.split(_WORD_SPLIT, space_separated_fragment))
return [w.lower() for w in words if w]
def create_vocabulary(vocabulary_path, data_path, max_vocabulary_size,
tokenizer=None, normalize_digits=True):
"""Create vocabulary file (if it does not exist yet) from disc_data file.
Data file is assumed to contain one sentence per line. Each sentence is
tokenized and digits are normalized (if normalize_digits is set).
Vocabulary contains the most-frequent tokens up to max_vocabulary_size.
We write it to vocabulary_path in a one-token-per-line format, so that later
token in the first line gets id=0, second line gets id=1, and so on.
Args:
vocabulary_path: path where the vocabulary will be created.
data_path: disc_data file that will be used to create vocabulary.
max_vocabulary_size: limit on the size of the created vocabulary.
tokenizer: a function to use to tokenize each disc_data sentence;
if None, basic_tokenizer will be used.
normalize_digits: Boolean; if true, all digits are replaced by 0s.
"""
if not gfile.Exists(vocabulary_path):
print("Creating vocabulary %s from data %s" % (vocabulary_path, data_path))
vocab = {}
with gfile.GFile(data_path, mode="r") as f:
counter = 0
for line in f:
counter += 1
if counter % 100000 == 0:
print(" processing line %d" % counter)
tokens = tokenizer(line) if tokenizer else basic_tokenizer(line)
for w in tokens:
word = re.sub(_DIGIT_RE, "0", w) if normalize_digits else w
if word in vocab:
vocab[word] += 1
else:
vocab[word] = 1
vocab_list = _START_VOCAB + sorted(vocab, key=vocab.get, reverse=True)
if len(vocab_list) > max_vocabulary_size:
vocab_list = vocab_list[:max_vocabulary_size]
with gfile.GFile(vocabulary_path, mode="w") as vocab_file:
for w in vocab_list:
vocab_file.write(w + "\n")
def initialize_vocabulary(vocabulary_path):
"""Initialize vocabulary from file.
We assume the vocabulary is stored one-item-per-line, so a file:
dog
cat
will result in a vocabulary {"dog": 0, "cat": 1}, and this function will
also return the reversed-vocabulary ["dog", "cat"].
Args:
vocabulary_path: path to the file containing the vocabulary.
Returns:
a pair: the vocabulary (a dictionary mapping string to integers), and
the reversed vocabulary (a list, which reverses the vocabulary mapping).
Raises:
ValueError: if the provided vocabulary_path does not exist.
"""
if gfile.Exists(vocabulary_path):
rev_vocab = []
with gfile.GFile(vocabulary_path, mode="r") as f:
rev_vocab.extend(f.readlines())
rev_vocab = [line.strip() for line in rev_vocab]
vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)])
return vocab, rev_vocab
else:
raise ValueError("Vocabulary file %s not found.", vocabulary_path)
def sentence_to_token_ids(sentence, vocabulary,
tokenizer=None, normalize_digits=True):
"""Convert a string to list of integers representing token-ids.
For example, a sentence "I have a dog" may become tokenized into
["I", "have", "a", "dog"] and with vocabulary {"I": 1, "have": 2,
"a": 4, "dog": 7"} this function will return [1, 2, 4, 7].
Args:
sentence: the sentence in bytes format to convert to token-ids.
vocabulary: a dictionary mapping tokens to integers.
tokenizer: a function to use to tokenize each sentence;
if None, basic_tokenizer will be used.
normalize_digits: Boolean; if true, all digits are replaced by 0s.
Returns:
a list of integers, the token-ids for the sentence.
"""
if tokenizer:
words = tokenizer(sentence)
else:
words = basic_tokenizer(sentence)
if not normalize_digits:
return [vocabulary.get(w, UNK_ID) for w in words]
# Normalize digits by 0 before looking words up in the vocabulary.
return [vocabulary.get(re.sub(_DIGIT_RE, "0", w), UNK_ID) for w in words]
def data_to_token_ids(data_path, target_quary_path, target_answer_path, vocabulary,
tokenizer=None, normalize_digits=True):
"""Tokenize disc_data file and turn into token-ids using given vocabulary file.
This function loads disc_data line-by-line from data_path, calls the above
sentence_to_token_ids, and saves the result to target_path. See comment
for sentence_to_token_ids on the details of token-ids format.
Args:
data_path: path to the disc_data file in one-sentence-per-line format.
target_path: path where the file with token-ids will be created.
vocabulary_path: path to the vocabulary file.
tokenizer: a function to use to tokenize each sentence;
if None, basic_tokenizer will be used.
normalize_digits: Boolean; if true, all digits are replaced by 0s.
"""
if not gfile.Exists(target_quary_path) or not gfile.Exists(target_answer_path) :
print("Tokenizing data in %s" % data_path)
with gfile.GFile(data_path, mode="r") as data_file:
with gfile.GFile(target_quary_path, mode="w") as tokens_quary_file:
with gfile.GFile(target_answer_path, mode="w") as tokens_answer_file:
counter = 0
last_line = ' '
for line in data_file:
counter += 1
if counter % 10000 == 0 and counter < 200000:
print(" tokenizing line %d" % counter)
print(" quary: ", last_line, " answer: ", line)
last_line = line
token_ids = sentence_to_token_ids(line, vocabulary, tokenizer,
normalize_digits)
if(counter%2==1): tokens_quary_file.write(" ".join([str(tok) for tok in token_ids]) + "\n")
else: tokens_answer_file.write(" ".join([str(tok) for tok in token_ids]) + "\n")
def read_data(config, tokenized_quary_path, tokenized_answer_path, max_size=None):
"""Read data from tokenized file and put into buckets.
Args:
source_path: path to the files with token-ids.
max_size: maximum number of lines to read, all other will be ignored;
if 0 or None, data files will be read completely (no limit).
Returns:
data_set: a list of length len(_buckets); data_set[n] contains a list of
(source, target) pairs read from the provided data files that fit
into the n-th bucket, i.e., such that len(source) < _buckets[n][0] and
len(target) < _buckets[n][1]; source and target are lists of token-ids.
"""
data_set = [[] for _ in config.buckets]
with gfile.GFile(tokenized_quary_path, mode="r") as fq:
with gfile.GFile(tokenized_answer_path, mode="r") as fa:
source, target = fq.readline(), fa.readline()
counter = 0
while source and target and (not max_size or counter < max_size):
counter += 1
if counter % 100000 == 0:
print(" reading data line %d" % counter)
sys.stdout.flush()
source_ids = [int(x) for x in source.split()]
target_ids = [int(x) for x in target.split()]
target_ids.append(EOS_ID)
for bucket_id, (source_size, target_size) in enumerate(config.buckets):
if len(source_ids) < source_size and len(target_ids) < target_size:
data_set[bucket_id].append([source_ids, target_ids])
break
source, target = fq.readline(), fa.readline()
return data_set
def prepare_data(gen_config):
"""Get dialog data into dev_set, train_set, create vocabularies and tokenize data.
"""
# Get dialog data to the specified directory.
data_dir = gen_config.train_dir
vocabulary_size = gen_config.vocab_size
train_path = os.path.join(data_dir, "chat")
dev_path = os.path.join(data_dir, "chat_test")
# Create vocabularies of the appropriate sizes.
vocab_path = os.path.join(data_dir, "vocab%d.in" % vocabulary_size)
create_vocabulary(vocab_path, train_path + ".in", vocabulary_size)
# loading the vocabulary into memory
vocab, rev_vocab = initialize_vocabulary(vocab_path)
# Create token ids for the training data.
train_quary_ids_path = train_path + ("_quary.ids%d.in" % vocabulary_size)
train_answer_ids_path = train_path + ("_answer.ids%d.in" % vocabulary_size)
if not gfile.Exists(train_quary_ids_path) or not gfile.Exists(train_answer_ids_path):
data_to_token_ids(train_path + ".in", train_quary_ids_path, train_answer_ids_path, vocab)
# Create token ids for the development data.
dev_quary_ids_path = dev_path + ("_quary.ids%d.in" % vocabulary_size)
dev_answer_ids_path = dev_path + ("_answer.ids%d.in" % vocabulary_size)
if not gfile.Exists(dev_quary_ids_path) or not gfile.Exists(dev_answer_ids_path):
data_to_token_ids(dev_path + ".in", dev_quary_ids_path, dev_answer_ids_path, vocab)
# Read disc_data into buckets and compute their sizes.
print("Reading development and training gen_data")
dev_set = read_data(gen_config, dev_quary_ids_path, dev_answer_ids_path)
train_set = read_data(gen_config, train_quary_ids_path, train_answer_ids_path)
return vocab, rev_vocab, dev_set, train_set
def read_disc_data(config, query_path, answer_path, gen_path):
query_set = [[] for _ in config.buckets]
answer_set = [[] for _ in config.buckets]
gen_set = [[] for _ in config.buckets]
with gfile.GFile(query_path, mode="r") as query_file:
with gfile.GFile(answer_path, mode="r") as answer_file:
with gfile.GFile(gen_path, mode="r") as gen_file:
query, answer, gen = query_file.readline(), answer_file.readline(), gen_file.readline()
counter = 0
while query and answer and gen:
counter += 1
if counter % 100000 == 0:
print(" reading disc_data line %d" % counter)
query = [int(id) for id in query.strip().split()]
answer = [int(id) for id in answer.strip().split()]
gen = [int(id) for id in gen.strip().split()]
for i, (query_size, answer_size) in enumerate(config.buckets):
if len(query) <= query_size and len(answer) <= answer_size and len(gen) <= answer_size:
query = query[:query_size] + [PAD_ID] * (query_size - len(query) if query_size > len(query) else 0)
query_set[i].append(query)
answer = answer[:answer_size] + [PAD_ID] * (answer_size - len(answer) if answer_size > len(answer) else 0)
answer_set[i].append(answer)
gen = gen[:answer_size] + [PAD_ID] * (answer_size - len(gen) if answer_size > len(gen) else 0)
gen_set[i].append(gen)
query, answer, gen = query_file.readline(), answer_file.readline(), gen_file.readline()
return query_set, answer_set, gen_set
def prepare_disc_data_path(data_dir):
query_train_ids_path = os.path.join(data_dir, "train.query")
answer_train_ids_path = os.path.join(data_dir, "train.answer")
gen_train_ids_path = os.path.join(data_dir, "train.gen")
return query_train_ids_path, answer_train_ids_path, gen_train_ids_path
def prepare_disc_data(config):
train_path = os.path.join(config.train_dir, "train")
voc_file_path = [train_path + ".query", train_path + ".answer", train_path + ".gen"]
# use gen train vocab
vocab_path = os.path.join(config.gen_train_dir, "vocab%d.in" % config.vocab_size)
vocab, rev_vocab = initialize_vocabulary(vocab_path)
print("Preparing train disc_data in %s" % config.train_dir)
train_query_path, train_answer_path, train_gen_path = prepare_disc_data_path(config.train_dir)
query_set, answer_set, gen_set = read_disc_data(config, train_query_path, train_answer_path, train_gen_path)
return query_set, answer_set, gen_set, vocab, rev_vocab
import random
from six.moves import xrange
import numpy as np
def get_bucket_id(config, bucket_sizes):
# Choose a bucket according to disc_data distribution. We pick a random number
# in [0, 1] and use the corresponding interval in train_buckets_scale.
total_size = float(sum(bucket_sizes))
buckets_scale = [sum(bucket_sizes[:i + 1]) / total_size
for i in xrange(len(bucket_sizes))]
random_number_01 = np.random.random_sample()
bucket_id = min([i for i in range(len(buckets_scale)) if buckets_scale[i] > random_number_01])
return bucket_id
def get_batch(config, data, bucket_id):
"""Get a random batch of data from the specified bucket, prepare for step.
To feed data in step(..) it must be a list of time-major vectors, while
data here contains single batch-major cases. So the main logic of this
function is to re-index data cases to be in the proper format for feeding.
Args:
data: a tuple of size len(config.buckets) in which each element contains
lists of pairs of input and output data that we use to create a batch.
bucket_id: integer, which bucket to get the batch for.
Returns:
The triple (encoder_inputs, decoder_inputs, target_weights) for
the constructed batch that has the proper format to call step(...) later.
"""
encoder_size, decoder_size = config.buckets[bucket_id]
encoder_inputs, decoder_inputs = [], []
inputs_len, target_len = [], []
# Get a random batch of encoder and decoder inputs from data,
# pad them if needed, reverse encoder inputs and add GO to decoder.
for _ in xrange(config.batch_size):
encoder_input, decoder_input = random.choice(data[bucket_id])
# Encoder inputs are padded and then reversed.
encoder_pad = [PAD_ID] * (encoder_size - len(encoder_input))
encoder_inputs.append(encoder_input + encoder_pad)
inputs_len.append(len(encoder_input))
# Decoder inputs get an extra "GO" symbol, and are padded then.
decoder_pad_size = decoder_size - len(decoder_input) - 1
decoder_inputs.append([GO_ID] + decoder_input +
[PAD_ID] * decoder_pad_size)
target_len.append(len(decoder_input)+1)
# Now we create time-major vectors from the data selected above.
batch_encoder_inputs, batch_decoder_inputs, batch_weights = [], [], []
# Batch encoder inputs are just re-indexed encoder_inputs.
for length_idx in xrange(encoder_size):
batch_encoder_inputs.append(
np.array([encoder_inputs[batch_idx][length_idx]
for batch_idx in xrange(config.batch_size)], dtype=np.int32))
# Batch decoder inputs are re-indexed decoder_inputs, we create weights.
for length_idx in xrange(decoder_size):
batch_decoder_inputs.append(
np.array([decoder_inputs[batch_idx][length_idx]
for batch_idx in xrange(config.batch_size)], dtype=np.int32))
# Create target_weights to be 0 for targets that are padding.
batch_weight = np.ones(config.batch_size, dtype=np.float32)
for batch_idx in xrange(config.batch_size):
# We set weight to 0 if the corresponding target is a PAD symbol.
# The corresponding target is decoder_input shifted by 1 forward.
if length_idx < decoder_size - 1:
target = decoder_inputs[batch_idx][length_idx + 1]
if length_idx == decoder_size - 1 or target == PAD_ID:
batch_weight[batch_idx] = 0.0
batch_weights.append(batch_weight)
return batch_encoder_inputs, batch_decoder_inputs, batch_weights, inputs_len, target_len
def clean(inputs, ID):
resps = []
seq_tokens_t = []
for col in range(len(inputs[0])):
seq_tokens_t.append([inputs[row][col] for row in range(len(inputs))])
for seq in seq_tokens_t:
if ID in seq:
resps.append(seq[:seq.index(ID)])
else:
resps.append(seq)
return resps