-
Notifications
You must be signed in to change notification settings - Fork 38
/
train.py
278 lines (236 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from __future__ import print_function
import os
import argparse
import numpy as np
import time
import glob
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import matplotlib.pyplot as plt
from tqdm import tqdm
from models.model import RetinaNet
from eval import evaluate
from datasets import *
from utils.utils import *
from torch_warmup_lr import WarmupLR
mixed_precision = True
try:
from apex import amp
except:
print('fail to speed up training via apex \n')
mixed_precision = False # not installed
DATASETS = {'VOC' : VOCDataset ,
'IC15': IC15Dataset,
'IC13': IC13Dataset,
'HRSC2016': HRSCDataset,
'DOTA':DOTADataset,
'UCAS_AOD':UCAS_AODDataset,
'NWPU_VHR':NWPUDataset
}
def train_model(args, hyps):
# parse configs
epochs = int(hyps['epochs'])
batch_size = int(hyps['batch_size'])
results_file = 'result.txt'
weight = 'weights' + os.sep + 'last.pth' if args.resume or args.load else args.weight
last = 'weights' + os.sep + 'last.pth'
best = 'weights' + os.sep + 'best.pth'
start_epoch = 0
best_fitness = 0 # max f1
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# creat folder
if not os.path.exists('./weights'):
os.mkdir('./weights')
for f in glob.glob(results_file):
os.remove(f)
# multi-scale
if args.multi_scale:
scales = args.training_size + 32 * np.array([x for x in range(-1, 5)])
# set manually
# scales = np.array([384, 480, 544, 608, 704, 800, 896, 960])
print('Using multi-scale %g - %g' % (scales[0], scales[-1]))
else :
scales = args.training_size
############
# dataloader
assert args.dataset in DATASETS.keys(), 'Not supported dataset!'
ds = DATASETS[args.dataset](dataset=args.train_path, augment=args.augment)
collater = Collater(scales=scales, keep_ratio=True, multiple=32)
loader = data.DataLoader(
dataset=ds,
batch_size=batch_size,
num_workers=8,
collate_fn=collater,
shuffle=True,
pin_memory=True,
drop_last=True
)
# Initialize model
init_seeds()
model = RetinaNet(backbone=args.backbone, hyps=hyps)
# Optimizer
optimizer = optim.Adam(model.parameters(), lr=hyps['lr0'])
# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=0.1)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[round(epochs * x) for x in [0.7, 0.9]], gamma=0.1)
scheduler = WarmupLR(scheduler, init_lr=hyps['warmup_lr'], num_warmup=hyps['warm_epoch'], warmup_strategy='cos')
# scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=20, T_mult=1, eta_min = 1e-5)
scheduler.last_epoch = start_epoch - 1
######## Plot lr schedule #####
# y = []
# for _ in range(epochs):
# scheduler.step()
# y.append(optimizer.param_groups[0]['lr'])
# plt.plot(y, label='LR')
# plt.xlabel('epoch')
# plt.ylabel('LR')
# plt.tight_layout()
# plt.savefig('LR.png', dpi=300)
# import ipdb; ipdb.set_trace()
###########################################
# load chkpt
if weight.endswith('.pth'):
chkpt = torch.load(weight)
# load model
if 'model' in chkpt.keys() :
model.load_state_dict(chkpt['model'])
else:
model.load_state_dict(chkpt)
# load optimizer
if 'optimizer' in chkpt.keys() and chkpt['optimizer'] is not None and args.resume :
optimizer.load_state_dict(chkpt['optimizer'])
best_fitness = chkpt['best_fitness']
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda()
# load results
if 'training_results' in chkpt.keys() and chkpt.get('training_results') is not None and args.resume:
with open(results_file, 'w') as file:
file.write(chkpt['training_results']) # write results.txt
if args.resume and 'epoch' in chkpt.keys():
start_epoch = chkpt['epoch'] + 1
del chkpt
if torch.cuda.is_available():
model.cuda()
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model).cuda()
if mixed_precision:
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
model_info(model, report='summary') # 'full' or 'summary'
# 'P', 'R', 'mAP', 'F1'
results = (0, 0, 0, 0)
for epoch in range(start_epoch,epochs):
print(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'cls', 'reg', 'total', 'targets', 'img_size'))
pbar = tqdm(enumerate(loader), total=len(loader)) # progress bar
mloss = torch.zeros(2).cuda()
for i, (ni, batch) in enumerate(pbar):
model.train()
if args.freeze_bn:
if torch.cuda.device_count() > 1:
model.module.freeze_bn()
else:
model.freeze_bn()
optimizer.zero_grad()
ims, gt_boxes = batch['image'], batch['boxes']
if torch.cuda.is_available():
ims, gt_boxes = ims.cuda(), gt_boxes.cuda()
losses = model(ims, gt_boxes,process =epoch/epochs )
loss_cls, loss_reg = losses['loss_cls'].mean(), losses['loss_reg'].mean()
loss = loss_cls + loss_reg
if not torch.isfinite(loss):
import ipdb; ipdb.set_trace()
print('WARNING: non-finite loss, ending training ')
break
if bool(loss == 0):
continue
# calculate gradient
if mixed_precision:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.1)
optimizer.step()
# Print batch results
loss_items = torch.stack([loss_cls, loss_reg], 0).detach()
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0 # (GB)
s = ('%10s' * 2 + '%10.3g' * 5) % (
'%g/%g' % (epoch, epochs - 1), '%.3gG' % mem, *mloss, mloss.sum(), gt_boxes.shape[1], min(ims.shape[2:]))
pbar.set_description(s)
# Update scheduler
scheduler.step()
final_epoch = epoch + 1 == epochs
# eval
if hyps['test_interval']!= -1 and epoch % hyps['test_interval'] == 0 and epoch > 30 :
if torch.cuda.device_count() > 1:
results = evaluate(target_size=args.target_size,
test_path=args.test_path,
dataset=args.dataset,
model=model.module,
hyps=hyps,
conf = 0.01 if final_epoch else 0.1)
else:
results = evaluate(target_size=args.target_size,
test_path=args.test_path,
dataset=args.dataset,
model=model,
hyps=hyps,
conf = 0.01 if final_epoch else 0.1) # p, r, map, f1
# Write result log
with open(results_file, 'a') as f:
f.write(s + '%10.3g' * 4 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
## Checkpoint
if arg.dataset in ['IC15', ['IC13']]:
fitness = results[-1] # Update best f1
else :
fitness = results[-2] # Update best mAP
if fitness > best_fitness:
best_fitness = fitness
with open(results_file, 'r') as f:
# Create checkpoint
chkpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': f.read(),
'model': model.module.state_dict() if type(
model) is nn.parallel.DistributedDataParallel else model.state_dict(),
'optimizer': None if final_epoch else optimizer.state_dict()}
# Save last checkpoint
torch.save(chkpt, last)
# Save best checkpoint
if best_fitness == fitness:
torch.save(chkpt, best)
if (epoch % hyps['save_interval'] == 0 and epoch > 100) or final_epoch:
if torch.cuda.device_count() > 1:
torch.save(chkpt, './weights/deploy%g.pth'% epoch)
else:
torch.save(chkpt, './weights/deploy%g.pth'% epoch)
# end training
dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
torch.cuda.empty_cache()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train a detector')
# config
parser.add_argument('--hyp', type=str, default='hyp.py', help='hyper-parameter path')
# network
parser.add_argument('--backbone', type=str, default='res50')
parser.add_argument('--freeze_bn', type=bool, default=False)
parser.add_argument('--weight', type=str, default='') #
parser.add_argument('--multi-scale', action='store_true', help='adjust (67% - 150%) img_size every 10 batches')
# NWPU-VHR10
parser.add_argument('--dataset', type=str, default='NWPU_VHR')
parser.add_argument('--train_path', type=str, default='NWPU_VHR/train.txt')
parser.add_argument('--test_path', type=str, default='NWPU_VHR/test.txt')
parser.add_argument('--training_size', type=int, default=800)
parser.add_argument('--resume', action='store_true', help='resume training from last.pth')
parser.add_argument('--load', action='store_true', help='load training from last.pth')
parser.add_argument('--augment', action='store_true', help='data augment')
parser.add_argument('--target_size', type=int, default=[800])
#
arg = parser.parse_args()
hyps = hyp_parse(arg.hyp)
print(arg)
print(hyps)
train_model(arg, hyps)