This tutorial introduces how to call the pretraining model in MindCV to make classification prediction on the test image.
By calling the registry.list_models
function in mindcv.models
, the names of all network models can be printed. The models of a network in different parameter configurations will also be printed, such as resnet18 / resnet34 / resnet50 / resnet101 / resnet152.
import sys
sys.path.append("..")
from mindcv.models import registry
registry.list_models()
['BiT_resnet50',
'repmlp_b224',
'repmlp_b256',
'repmlp_d256',
'repmlp_l256',
'repmlp_t224',
'repmlp_t256',
'convit_base',
'convit_base_plus',
'convit_small',
...
'visformer_small',
'visformer_small_v2',
'visformer_tiny',
'visformer_tiny_v2',
'vit_b_16_224',
'vit_b_16_384',
'vit_b_32_224',
'vit_b_32_384',
'vit_l_16_224',
'vit_l_16_384',
'vit_l_32_224',
'xception']
Taking the resnet50 model as an example, we introduce two methods to load the model checkpoint using the create_model
function in mindcv.models
.
1). When the pretrained
parameter in the interface is set to True, network weights can be automatically downloaded.
from mindcv.models import create_model
model = create_model(model_name='resnet50', num_classes=1000, pretrained=True)
# Switch the execution logic of the network to the inference scenario
model.set_train(False)
102453248B [00:16, 6092186.31B/s]
ResNet<
(conv1): Conv2d<input_channels=3, output_channels=64, kernel_size=(7, 7), stride=(2, 2), pad_mode=pad, padding=3, dilation=(1, 1), group=1, has_bias=False, weight_init=normal, bias_init=zeros, format=NCHW>
(bn1): BatchNorm2d<num_features=64, eps=1e-05, momentum=0.9, gamma=Parameter (name=bn1.gamma, shape=(64,), dtype=Float32, requires_grad=True), beta=Parameter (name=bn1.beta, shape=(64,), dtype=Float32, requires_grad=True), moving_mean=Parameter (name=bn1.moving_mean, shape=(64,), dtype=Float32, requires_grad=False), moving_variance=Parameter (name=bn1.moving_variance, shape=(64,), dtype=Float32, requires_grad=False)>
(relu): ReLU<>
(max_pool): MaxPool2d<kernel_size=3, stride=2, pad_mode=SAME>
...
(pool): GlobalAvgPooling<>
(classifier): Dense<input_channels=2048, output_channels=1000, has_bias=True>
>
2). When the checkpoint_path
parameter in the interface is set to the file path, the model parameter file with the .ckpt
can be loaded.
from mindcv.models import create_model
model = create_model(model_name='resnet50', num_classes=1000, checkpoint_path='./resnet50_224.ckpt')
# Switch the execution logic of the network to the inference scenario
model.set_train(False)
Here, we download a Wikipedia image as a test image, and use the create_dataset
function in mindcv.data
to construct a custom dataset for a single image.
from mindcv.data import create_dataset
num_workers = 1
# path of dataset
data_dir = "./data/"
dataset = create_dataset(root=data_dir, split='test', num_parallel_workers=num_workers)
# Image visualization
from PIL import Image
Image.open("./data/test/dog/dog.jpg")
Call the create_transforms
function to obtain the data processing strategy (transform list) of the ImageNet dataset used by the pre-trained model.
We pass the obtained transform list into the create_loader
function, specify batch_size=1
and other parameters, and then complete the preparation of test data. The Dataset
object is returned as the input of the model.
from mindcv.data import create_transforms, create_loader
transforms_list = create_transforms(dataset_name='imagenet', is_training=False)
data_loader = create_loader(
dataset=dataset,
batch_size=1,
is_training=False,
num_classes=1000,
transform=transforms_list,
num_parallel_workers=num_workers
)
The picture of the user-defined dataset is transferred to the model to obtain the inference result. Here, use the Squeeze
function of mindspore.ops
to remove the batch dimension.
import mindspore.ops as P
import numpy as np
images, _ = next(data_loader.create_tuple_iterator())
output = P.Squeeze()(model(images))
pred = np.argmax(output.asnumpy())
with open("imagenet1000_clsidx_to_labels.txt") as f:
idx2label = eval(f.read())
print('predict: {}'.format(idx2label[pred]))
predict: Labrador retriever