We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
我使用DPOptimizer微调GPT,速度太慢,我使用了四条数据,batchsize设置为2,使用正常微调20epochs,花费<4min,但是使用DPOptimizer则无法微调,大概过了40分钟,被迫终止了运行。 我使用的包版本如下:
mindarmour 1.8.0 mindformers 0.3.0 mindinsight 1.8.0 mindspore-ascend 1.8.1 mindx-elastic 0.0.1 modelarts-mindspore-model-server 1.0.4
因为每次使用DPOptimier都无法得到运行结果,所以没有具体的时间,我使用的代码如下: 因为微调的代码有数据集,不方便复现。我使用下面的代码也遇到了跑不出结果的问题,请问要如何解决?
from mindformers import GPT2LMHeadModel, GPT2Tokenizer from mindarmour.privacy.diff_privacy import DPOptimizerClassFactory import mindspore as ms model = GPT2LMHeadModel.from_pretrained('gpt2') model.set_train(False) tokenizer = GPT2Tokenizer.from_pretrained('gpt2') GaussianSGD = DPOptimizerClassFactory(micro_batches=2) GaussianSGD.set_mechanisms('Gaussian', norm_bound=1.0, initial_noise_multiplier=1.5) opt = GaussianSGD.create('Momentum')(params=model.trainable_params(), learning_rate=0.001, momentum=0.9) # opt = ms.nn.Adam(model.trainable_params()) grad_fn = ms.ops.value_and_grad(model, None, opt.parameters, has_aux=False) model.set_train(True) inputs = tokenizer(["hello world"], padding='max_length', max_length=model.config.seq_length+1, return_tensors='ms') # output = model(input_ids=inputs["input_ids"]) # print(output) # 计算loss loss, grad = grad_fn(inputs['input_ids']) res = opt(grad) print(loss) print(res)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
我使用DPOptimizer微调GPT,速度太慢,我使用了四条数据,batchsize设置为2,使用正常微调20epochs,花费<4min,但是使用DPOptimizer则无法微调,大概过了40分钟,被迫终止了运行。
我使用的包版本如下:
因为每次使用DPOptimier都无法得到运行结果,所以没有具体的时间,我使用的代码如下:
因为微调的代码有数据集,不方便复现。我使用下面的代码也遇到了跑不出结果的问题,请问要如何解决?
The text was updated successfully, but these errors were encountered: