-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFig3.spatial_trajectory.Rmd
327 lines (279 loc) · 12 KB
/
Fig3.spatial_trajectory.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
---
title: "Spatial Trajectories"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
# load required packages
require(data.table)
require(future)
require(tidyverse)
require(ggpubr)
library (Seurat)
source("Helper_scripts/figure_themes.R")
```
The following 3 chunks were run on a GPU cluster. The corresponding data will be available upon request
```{r}
# load data
load(file.path(data_dir, "Rdata", "ast_all.brain.regions_cluster.group_removed.Rdata"))
# Calculate average
Idents(merged) = paste(merged$Donor.ID, merged$Unified_region, sep = "_")
ave.exp = AverageExpression(merged, slot = "data", assays = "RNA")
ave.exp = ave.exp$RNA %>%
as.data.frame() %>%
rownames_to_column("gene") %>%
as.data.table()
```
Modifying the data
```{r}
ave.exp_dt = melt(ave.exp, id.vars = "gene", variable.name = "donor_region", value.name = "ave.exp")
ave.exp_dt[, ids := str_split(donor_region, "_")]
ave.exp_dt[, Donor.ID := map(ids, ~(.x[1])) %>% unlist()]
ave.exp_dt[, Unified_region := map(ids, ~(.x[2])) %>% unlist()]
ave.exp_dt[, ids := NULL]
ave.exp_dt[, Region := factor(Unified_region, levels = c("EC", "BA20", "BA46", "V2", "V1"))]
ave.exp_dt[, Region := factor(Region, labels = c("EC", "ITG", "PFC", "V2", "V1"))]
# table(ave.exp_dt$Region, ave.exp_dt$Unified_region)
save(ave.exp_dt, file = file.path(rdata_dir, "ast_sample.level.average.expression_filtered.Rdata"))
```
Perform differential expression between the regions
```{r}
Idents(merged) <- "Unified_region"
ECvsITG_DonorID <- FindMarkers(merged, ident.1 = "EC", ident.2 = "BA20", test.use = "LR", latent.vars = c("Path..Group.", "Donor.ID"))
setDT(ECvsITG_DonorID, keep.rownames = TRUE)
fwrite (ECvsITG_DonorID_all,"/space/mindds/1/projects/AbbvieSnRNASeq/scripts/differential_expression/Results/ECvsITG_DonorID.csv" )
ITGvsPFC_DonorID <- FindMarkers(merged, ident.1 = "BA20", ident.2 = "BA46", test.use = "LR", latent.vars = c("Path..Group.", "Donor.ID"))
setDT(ITGvsPFC_DonorID, keep.rownames = TRUE)
fwrite (ITGvsPFC_DonorID,"/space/mindds/1/projects/AbbvieSnRNASeq/scripts/differential_expression/Results/ITGvsPFC_DonorID.csv" )
PFCvsV2_DonorID <- FindMarkers(merged, ident.1 = "BA46", ident.2 = "V2", test.use = "LR", latent.vars = c("Path..Group.", "Donor.ID"))
setDT(PFCvsV2_DonorID, keep.rownames = TRUE)
fwrite (PFCvsV2_DonorID,"/space/mindds/1/projects/AbbvieSnRNASeq/scripts/differential_expression/Results/PFCvsV2_DonorID.csv" )
V2vsV1_DonorID <- FindMarkers(merged, ident.1 = "V2", ident.2 = "V1", test.use = "LR", latent.vars = c("Path..Group.", "Donor.ID"))
setDT(V2vsV1_DonorID, keep.rownames = TRUE)
fwrite (V2vsV1_DonorID,"/space/mindds/1/projects/AbbvieSnRNASeq/scripts/differential_expression/Results/V2vsV1_DonorID.csv" )
# get significant genes
get_sig_genes = function(de_df, p.cut = 0.05){
return(de_df[de_df$p_val_adj < p.cut, ]$genes)
}
sig_genes = list(
ECvsITG = get_sig_genes(ECvsITG),
ITGvsPFC = get_sig_genes(ITGvsPFC),
PFCvsV2 = get_sig_genes(PFCvsV2),
V2vsV1 = get_sig_genes(V2vsV1)
)
inter_sig_genes = Reduce(intersect, sig_genes) %>% sort()
union_sig_genes = Reduce(union, sig_genes) %>% sort()
writeLines(union_sig_genes, "union_sig_genes.txt")
```
Spatial Trajectory clustering
```{r}
# Average expression results
load("Example_data/ast_sample.level.average.expression_filtered.Rdata")
ind_meta = fread("Example_data/AD_progression_meta.csv")
ind_meta = ind_meta[, c("Donor.ID", "Path..Group.")] %>%
unique()
ind_meta[ , Donor.ID := as.character(Donor.ID)]
ave.exp_dt[ind_meta, on = .(Donor.ID), path_group := i.Path..Group.]
# z-scores of genes across brain regions within donor
ave.exp_dt[, zscore_donor := scale(ave.exp*100), by = .(Donor.ID, gene)]
# clustering based on selected pathgroup
de_fs = list.files("Example_Data/differential_expression_results") %>%
grep("_DonorID.csv", ., value = T)
de_gs = lapply(de_fs, function(f){
dt = fread(file.path("Example_Data/differential_expression_results", f))
dt[, contract := f]
setnames(dt, "rn", "Gene")
return(dt[p_val_adj < 0.05, Gene])
})
de_hvgs = Reduce(union, de_gs) #genes
ave.exp_dt_hvgs = ave.exp_dt[gene %in% de_hvgs, ]
de_hvgs = Reduce(union, de_gs) #genes
ave.exp_dt_hvgs = ave.exp_dt[gene %in% de_hvgs, ]
path_group_clustering = function(ave.exp_dt_hvgs, sel_path_group, k = 5, seed = 9){
dt = ave.exp_dt_hvgs[path_group %in% sel_path_group, ]
dt[, ave_zscore_donor := mean(zscore_donor), by = .(gene, Region)]
mtx = dt[, .(gene, ave_zscore_donor, Region)] %>% unique()
mtx = dcast(mtx, gene ~ Region, value.var = "ave_zscore_donor")
mtx = mtx %>% as.data.frame() %>%
column_to_rownames("gene") %>%
as.matrix()
library(SNFtool)
set.seed(seed)
diss_mtx = dist(mtx)
## compute similarity matrix as done in paper
sim_mtx = 1-as.matrix(diss_mtx)/max(diss_mtx)
# uses code from the Similarity Network Fusion Paper
clust = SNFtool::spectralClustering(sim_mtx, K = k) # where kVal is the number of clusters you would like to partition
clustLab = as.factor(clust)
annot = data.table(gene = rownames(mtx), cluster = clustLab)
dt[annot, on = .(gene), cluster := i.cluster]
p = ComplexHeatmap::Heatmap(
mtx,
show_row_names = F,
cluster_columns = F,
row_split = clustLab
)
return(list(dt = dt, clustLab = clustLab, mtx = mtx, p = p))
}
pathall_clust = path_group_clustering(
ave.exp_dt_hvgs = ave.exp_dt_hvgs,
sel_path_group = c(1,2,3,4),
k = 6
)
```
Figure 3a:
Spatial trajectory gene sets result from clustering the n=504 DEGs between any two “adjacent” nodes of the AD network from EC to V1.
```{r}
gene_trends = pathall_clust$dt[, .(gene, ave_zscore_donor, Region, cluster)] %>% unique()
gene_trends = gene_trends[!(grepl("MT-", gene)),]
gene_trends[, ave_zscore_cluster := mean(ave_zscore_donor), by = .(cluster, Region)]
gene_trends_cluster = gene_trends[, .(gene, ave_zscore_cluster, Region, cluster)] %>% unique()
# rename the clusters
gene_trends_N<-gene_trends[Region=="EC", .N, by=.(cluster)]
gene_trends_N<-gene_trends_N[order(cluster),]$N
rename_dt1 = data.table(
#cluster = factor(c(4,3,2,1,6,5)),
cluster = factor(c(1,2,3,4,5,6)),
new_name = paste0("gene set #", c(4,3,2,1,6,5), " (n = ",gene_trends_N, ")")
)
gene_trends_cluster[rename_dt1, on = .(cluster), new_name := i.new_name]
gene_trends[rename_dt1, on = .(cluster), new_name := i.new_name]
rename_dt = data.table(
new_name = paste0("gene set #", 1:6, " (n = ",gene_trends_N, ")"),
pTau = c("pos", "neg", "ns", "ns", "pos", "neg"),
abeta = c("ns", "ns", "pos", "ns", "pos", "neg"),
regional_EC = c("high", "low", "ns", "high", "low", "ns"),
regional_V1 = c("low", "high", "ns", "high", "low", "high")
)
p_line = ggplot(
gene_trends,
aes(x = Region, y = ave_zscore_donor, group = gene)
) + geom_line(color = "gray90") +
facet_wrap(. ~ new_name, ncol = 1, strip.position = "top", scales = "free_x") +
geom_line(
dat = gene_trends_cluster,
aes(x = Region, y = ave_zscore_cluster, color = new_name),
size = 1
) +
my_border_theme() +
labs(x = "Regions", y = "Standardized gene expression")+
theme(legend.position = "none",
strip.text = element_text(size = 17)
# ,
# axis.title.y.left = element_blank(),
# axis.text.y.right = element_blank(),
# axis.ticks.y.right = element_blank()
) +
# scale_y_continuous(position = 'right', sec.axis = dup_axis()) +
scale_color_manual(values = c(
"#e9a3c9", "#91bfdb",
"#FBA949", "#8BD448",
"#FAE442", "#9C4F96"))
p_line
ggsave(file.path("../Results", "Fig3", "fig3a-gene-trajectories.png"), width = 5, height = 6)
# add color bar
figure_annot = function(rename_dt, annot_col, annot_title, no_strip_text = T){
p_annot = ggplot(rename_dt) +
geom_bar(
mapping = aes_string(x = 1, y = 1, fill = annot_col),
stat = "identity",
width = 2)+
theme_void()+
theme(panel.spacing.x = unit(1, "mm"), legend.position = "none")+
facet_wrap(new_name~., scales = "free_x", nrow = 6) +
scale_fill_manual(values = c("pos" = "#FF6B6B", "neg" = "#4D96FF", "ns" = "gray",
"high" = "#FF6B6B", "low" = "#4D96FF")) +
theme(axis.title.x = element_text(color = "black", size = 10),
axis.title.x.bottom = element_blank(),
axis.title.x.top = element_text(size = 10, angle = 90, hjust = 5)) +
scale_x_discrete(position = "top",
breaks = c("pTau", "abeta", "EC", "V1"),
labels = c("pTau", "A\u03b2", "ECHigh", "V1High")) +
labs(x = annot_title)
if(no_strip_text){
p_annot = p_annot +
theme(strip.text = element_blank())
}else{
p_annot = p_annot +
theme(strip.text = element_text(size = 16))
}
return(p_annot)
}
pTau_annot = figure_annot(rename_dt, "pTau", "pTau")
abeta_annot = figure_annot(rename_dt, "abeta", "abeta")
regionEC_annot = figure_annot(rename_dt, "regional_EC", "EC")
regionV1_annot = figure_annot(rename_dt, "regional_V1", "V1")
ggarrange(p_line , pTau_annot, NULL, abeta_annot, NULL, regionEC_annot, NULL, regionV1_annot, NULL, align = "h", ncol = 9, nrow = 1, widths = c(1, 0.09, 0.01, 0.09, 0.01, 0.09, 0.01, 0.09, 0.005))
ggsave(filename = file.path("../Results", "AD progression",
"fig3a_with_colorbar.png"), height = 14, width = 4)
trends_gene = reshape(gene_trends, idvar = "gene", timevar = "Region", direction = 'wide')
```
Pathway analysis:
Pathways analysis was done on gsea web tool https://www.gsea-msigdb.org/gsea/msigdb/annotate.jsp and the .csv files were generated. Selected pathways were plotted in Figure 3b
Figure 3b:
Functional characterization of each spatial trajectory gene set via pathway analysis
```{r}
barplot<- function(pathways,
color,
wide,
space,
dodge,
times,
hjust) {
pathways[, genes1:= gsub("\\|", " | ", genes)]
pathways[, labels := stringr::str_wrap(pathways$genes1,25)]
#pathways_ordered <- pathways[order(`-log10FDR`), ]
pathways<-pathways[order(`-log10FDR`), ]
# pathways[, gene_set_name2 :=
# factor(gene_set_name, levels = pathways_ordered$gene_set_name)]
# pathways[, name2 := factor(name, levels = pathways_ordered$name)]
# pathways[, genes2 := factor(genes1, levels = pathways_ordered$genes1)]
# pathways[, labels2 := factor(labels, levels = pathways_ordered$labels)]
out <-
ggplot(data=pathways, aes(x=`-log10FDR`, y=fct_reorder(labels, `-log10FDR`))) +
geom_bar(
width = wide,
fill = color,
alpha = 0.45,
position = position_dodge(width = 0.1),
stat = "identity"
) +
xlab("log10FDR") +
theme_classic()+
theme(plot.title = element_text(hjust = 1)) +
theme(axis.title = element_text(size = 20, color = "black")) +
labs(x = expression("-log"[10]*" (FDR)"), y = "") +
scale_x_reverse(position = "top", guide = guide_axis(check.overlap = TRUE)) +
scale_y_discrete(position = "right") +
theme(
axis.text.y=element_text(size =16),
axis.ticks.y=element_blank(),
axis.text.x = element_text(
size = 8)
) +
theme(aspect.ratio = space)+
geom_text(aes(
label = `name`,
x = rep(c(dodge),
times = times),
hjust = hjust
),
size = 8)
out = out + facet_wrap(new_name ~ .) +
theme(strip.text.x = element_blank())
return(out)
}
allcluster <- fread("Example_Data/allclusters_SP_asp.csv")
allcluster[, new_name := paste0("gene set #", geneset)]
allcluster[, `-log10FDR` := -log10(`FDR q-value`)]
allcluster[order(`-log10FDR`), ]
#pathways, color, wide, space, dodge, times, hjust
bar_1 = barplot(allcluster[geneset == 1], "#e9a3c9", 0.8, 0.5, 0.08, 6, 1)
bar_2 = barplot(allcluster[geneset == 2], "#91bfdb", 0.8, 0.5, 0.1, 5, 1)
bar_3 = barplot(allcluster[geneset == 3], "#FBA949", 0.8, 0.5, 0.1, 5, 1)
bar_4 = barplot(allcluster[geneset == 4], "#8BD448", 0.8, 0.5, 0.205, 6, 1)
bar_5 = barplot(allcluster[geneset == 5], "#FAE442", 0.8, 0.5, 0.02, 4, 1)
bar_6 = barplot(allcluster[geneset == 6], "#9C4F96", 0.8, 0.5, 0.1, 5, 1)
bars = ggarrange(bar_1, bar_2, bar_3, bar_4, bar_5, bar_6,
ncol = 1, align = "hv")
```