-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDTLQR_Q_3x3_Sogang_Nonlin_ref.m
215 lines (187 loc) · 7.24 KB
/
DTLQR_Q_3x3_Sogang_Nonlin_ref.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
close all; clc; clear all; warning off;
global dt Tfinal gamma R Q N n epsilon
while(1)
clear all; close all; clc;
%% Offline Initialization
epsilon = 90
Tfinal = 2; dt = 0.001;
t = 0:dt:Tfinal; Nt = length(t);
% Gs = zpk([],[2 5],1);
% Gz = c2d(Gs,dt,'zoh'); [numz denz]=tfdata(Gz,'v');
% [A B C D] = tf2ss(numz,denz);
% C = [10 2];
A = [-1 2; 2.2 1.7]; B = [2; 1.6]; C = [1 2];
F=[0.99]; L=[0 0 0];
R = 0.1; Q = 1;
gamma = 0.8;
A1=[A [0;0];
[0 0] F];
B1=[B;0];
% C1 = [C 0; zeros(1,length(C)+1); zeros(1,length(C)+1); ]-eye(length(C)+1);
% Q1=C1'*Q*C1;
Q1=[C'*Q*C -C'*Q;-Q*C Q];
G=[Q1 zeros(length(Q1),1);
zeros(1,length(Q1)) R];
x=[0;0]; r=[10]; % Initial value
X=[x; r];
X_off=[x; r];
%% Offline Optimization
while(1)
% offline solution
P1=dare(sqrt(gamma)*A1,sqrt(gamma)*B1,Q1,R); % P by LQR
H1 = [Q1 + gamma*A1'*P1*A1 gamma*A1'*P1*B1;
gamma*B1'*P1*A1 R+gamma*B1'*P1*B1];
H1yy=H1(length(H1),length(H1)); H1yx=H1(length(H1),1:length(H1)-1);
K1=-inv(H1yy)*H1yx;
% offline Simulation
for k=1:10
H1=G+gamma*[A1 B1;K1*A1 K1*B1]'*H1*[A1 B1;K1*A1 K1*B1];
H1yy=H1(length(H1),length(H1)); H1yx=H1(length(H1),1:length(H1)-1);
K1=-inv(H1yy)*H1yx;
end
for k=1:Nt
u_off(k)=K1*X_off(:,k);
X_off(:,k+1)=A1*X_off(:,k)+B1*u_off(k);
y_off(k)=C*X_off(1:2,k);
end
e_off = X_off(3,1:end-1)-y_off;
figure('color','w')
subplot(311);
plot(t,X_off(3,1:end-1),'b','linewidth',2); hold on;
plot(t,y_off,'r:','linewidth',2); hold on;
legend('r','y'); ylabel('Position');
subplot(312);
plot(t,e_off,'b','linewidth',2);
ylabel('e'); xlabel('Time (s)')
subplot(313);
plot(t,u_off,'b','linewidth',2);
ylabel('u'); xlabel('Time (s)')
drawnow;
break;
end
%% online solution
N = 20;
Hold = 10*eye(length(A1)+1);
% R = 1; Q = 1;
H=H1+rand(4,4)*5;
% H = eye(4)*140;
Hyy=H(4,4);Hyx=H(4,1:3);K=-inv(Hyy)*Hyx;
H0 = H; K0 = K;
n = length(H)*(length(H)+1)/2;
zbar = zeros(n,N); d_target = zeros(N,1); kk = 1;
Ysave = []; Xsave =[]; Ksave = [];
i=1; isave =0; Xpi = []; Y = []; Z = []; d=[]; d1=[]; d2=[];
j=1; h=0; ranksave = []; update = 0; detsave = [];
figure('color','w');
%% Iteration Start !!
% Reference
for k=1:2*Nt+1
r(k) = 1*cos(2*pi*dt*(k-1))+0.1*cos(13.7*pi*dt*(k-1))+0.7*cos(2.7*pi*dt*(k-1));
end
while(1)
X(:,i)=[x(:,i);r(:,i)]; % Current State
% r(:,i+1)=F*r(:,i); % Next Trajectory
% Policy Update (Tricky for nonsingularity)
noise=0.01; if t(i)> 0.5, noise = 0; end
BB(i) = noise*rand(1); % Adding noise to avoid singularity (u is dependent on x)
u(i)=K*X(:,i)+ BB(i); % Noisy input
Z(:,i)=[X(:,i); u(i)]; % State for Q function approximation
% System model
x(:,i+1)=A*x(:,i)+B*u(i);
y(i)=C*x(:,i);
X(:,i+1)=[x(:,i+1);r(:,i+1)]; % New State for Q function
% Target
d_target=[X(:,i); u(i)]'*G*[X(:,i); u(i)]+gamma*[X(:,i+1);K*X(:,i+1)]'*H*[X(:,i+1);K*X(:,i+1)];
zbar=[X(1,i)^2; X(1,i)*X(2,i); X(1,i)*X(3,i); X(1,i)*u(i); X(2,i)^2; X(2,i)*X(3,i); X(2,i)*u(i); X(3,i)^2; X(3,i)*u(i); u(i)^2];
% Initialization for the Least Square
if h == 1 && i<=Tfinal/dt,
h = 0; Xpi = zeros(n,N); Y = zeros(N,1);
end
% Collect target during N steps
Xpi(:,i-isave) = zbar; Y(i-isave,:) = d_target;
Xsave(i,:) = zbar; Ysave(i,:) = d_target;
if i-isave > 3, Tsave(i,:) = [mod(i,N), Xpi(1,3)]; end
% Learning & Least square problem
if mod(i,N) == 0
if i>Tfinal/dt, break; end
h = 1; eL=abs(K-K1); kk = kk+1;
update = 0;
if norm(H-Hold) > epsilon
if i>Tfinal/dt || norm(Xpi*Xpi') == inf || norm(Xpi*Xpi') == NaN , sprintf('Rank Error, Det = 0;'), break; end
ranksave = [ranksave rank(Xpi*Xpi')]; % Check the rank for the singularity
detsave = [detsave det(Xpi*Xpi')];
vH=(Xpi*Xpi')\(Xpi*Y); % New vectorization of H
Hold = H;
H=[vH(1,1) vH(2,1)/2 vH(3,1)/2 vH(4,1)/2 ; % New H
vH(2,1)/2 vH(5,1) vH(6,1)/2 vH(7,1)/2;
vH(3,1)/2 vH(6,1)/2 vH(8,1) vH(9,1)/2;
vH(4,1)/2 vH(7,1)/2 vH(9,1)/2 vH(10,1)];
Hyy=H(4,4);Hyx=H(4,1:3);
K=-inv(Hyy)*Hyx;
update = 1;
end
d(kk) = norm(eL); d1(kk) = norm(H1-H);
d2(kk) = norm(H-Hold); d3(kk) = update;
Ksave(kk,:) = K; % Save the New optimal gain
j=j+1;
isave = i;
end
% Realtime Monitoring
% if i>2
% plot(t(i-1:i),r(i-1:i),'b','linewidth',2); hold on;
% plot(t(i-1:i),y(i-1:i),'r:','linewidth',2);
% drawnow;
% end
if i>Tfinal/dt , sprintf('Success'), break; end
i=i+1;
end
if length(y) < Nt, Nt = length(y); end
rf = r(1:Nt); yf = y(1:Nt); uf = u(1:Nt); ef = rf-yf; t1= linspace(0,Tfinal,kk);
norm(rf-yf)
if norm(rf-yf)<100, break; end
end
% For Figure
% Overall Monitoring
figure('color','w');
subplot(211);
plot(t,rf,'b','linewidth',2); hold on;
plot(t,yf,'r:','linewidth',2);
% plot(t,y_off,'g--','linewidth',2); hold on; % Offline LQR
legend('r','y');
ylabel('Output'); xlabel('Time(s)')
% subplot(312);
% plot(t,ef,'b','linewidth',2);
% ylabel('e'); xlabel('Time (s)')
subplot(212);
plot(t,uf,'b.','linewidth',2);
ylabel('u'); xlabel('Time (s)')
% Update Monitoring
figure('color','w');
% subplot(311);
plot(t1,d3,'bo','linewidth',2); hold on;
plot(t1,d3,'r','linewidth',2);
ylabel('Policy Update'); xlabel('Time (s)')
% subplot(212);
% plot(t1,Ksave(:,1),'b','linewidth',2); hold on;
% plot(t1,Ksave(:,2),'r','linewidth',2); hold on;
% plot(t1,Ksave(:,3),'k','linewidth',2); hold on;
% legend('K(1)','K(2)','K(3)','','','')
% plot(t1,Ksave(:,1),'bo','linewidth',2); hold on;
% plot(t1,Ksave(:,2),'ro','linewidth',2); hold on;
% plot(t1,Ksave(:,3),'ko','linewidth',2); hold on;
% ylabel('K'); xlabel('Time (s)')
% Value and policy monitoring
figure('color','w');
subplot(211);
plot(t1,d,'bo','linewidth',2); hold on
plot(t1,d,'k','linewidth',2);
ylabel('|| K_{RL}-K_{LQ} ||')
% subplot(312);
% plot(t1,d1,'bo','linewidth',2); hold on
% plot(t1,d1,'r','linewidth',2)
% ylabel('|| H_{RL}-H_{LQ} ||')
subplot(212);
plot(t1,d2,'bo','linewidth',2); hold on
plot(t1,d2,'k','linewidth',2)
ylabel('|| H_{j+1}-H_{j} ||')
xlabel('Time (s)')