diff --git a/2024/10/19/ACAnet/index.html b/2024/10/19/ACAnet/index.html
index cad62123..644ea223 100644
--- a/2024/10/19/ACAnet/index.html
+++ b/2024/10/19/ACAnet/index.html
@@ -4,16 +4,16 @@
   <head>
     <meta charset="utf-8">
     <meta name="viewport" content="width=device-width, initial-scale=1">
-    <title>Activity Cliffs in Molecular Property Prediction - Zitnik Lab</title>
+    <title>Activity Cliffs in Molecular Properties - Zitnik Lab</title>
     <link rel="stylesheet" href="/assets/css/app.css">
     <link rel="shortcut icon" type="image/png"
            href="/favicon.png" 
     />
     <script defer src="https://use.fontawesome.com/releases/v5.3.1/js/all.js"></script>
     <!-- Begin Jekyll SEO tag v2.6.1 -->
-<title>Activity Cliffs in Molecular Property Prediction | Zitnik Lab</title>
+<title>Activity Cliffs in Molecular Properties | Zitnik Lab</title>
 <meta name="generator" content="Jekyll v3.8.6" />
-<meta property="og:title" content="Activity Cliffs in Molecular Property Prediction" />
+<meta property="og:title" content="Activity Cliffs in Molecular Properties" />
 <meta name="author" content="Marinka Zitnik" />
 <meta property="og:locale" content="en_US" />
 <meta name="description" content="New paper on activity-cliff informed contrastive learning for molecular property prediction." />
@@ -24,11 +24,11 @@
 <meta property="og:type" content="article" />
 <meta property="article:published_time" content="2024-10-19T00:00:00-04:00" />
 <meta name="twitter:card" content="summary" />
-<meta property="twitter:title" content="Activity Cliffs in Molecular Property Prediction" />
+<meta property="twitter:title" content="Activity Cliffs in Molecular Properties" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"url":"https://zitniklab.hms.harvard.edu/2024/10/19/ACAnet/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/2024/10/19/ACAnet/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Activity Cliffs in Molecular Property Prediction","dateModified":"2024-10-19T00:00:00-04:00","description":"New paper on activity-cliff informed contrastive learning for molecular property prediction.","datePublished":"2024-10-19T00:00:00-04:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"url":"https://zitniklab.hms.harvard.edu/2024/10/19/ACAnet/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/2024/10/19/ACAnet/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Activity Cliffs in Molecular Properties","dateModified":"2024-10-19T00:00:00-04:00","description":"New paper on activity-cliff informed contrastive learning for molecular property prediction.","datePublished":"2024-10-19T00:00:00-04:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
@@ -123,7 +123,7 @@
         <section class="hero  is-medium  is-bold is-primary" >
     <div class="hero-body">
         <div class="container">
-            <p class="title is-2">Activity Cliffs in Molecular Property Prediction</p>
+            <p class="title is-2">Activity Cliffs in Molecular Properties</p>
             <p class="subtitle is-3"></p>
             
         </div>
diff --git a/2024/12/07/SPECTRA/index.html b/2024/12/07/SPECTRA/index.html
new file mode 100644
index 00000000..1ef90eac
--- /dev/null
+++ b/2024/12/07/SPECTRA/index.html
@@ -0,0 +1,182 @@
+
+<!DOCTYPE html>
+<html>
+  <head>
+    <meta charset="utf-8">
+    <meta name="viewport" content="width=device-width, initial-scale=1">
+    <title>SPECTRA in Nature Machine Intelligence - Zitnik Lab</title>
+    <link rel="stylesheet" href="/assets/css/app.css">
+    <link rel="shortcut icon" type="image/png"
+           href="/favicon.png" 
+    />
+    <script defer src="https://use.fontawesome.com/releases/v5.3.1/js/all.js"></script>
+    <!-- Begin Jekyll SEO tag v2.6.1 -->
+<title>SPECTRA in Nature Machine Intelligence | Zitnik Lab</title>
+<meta name="generator" content="Jekyll v3.8.6" />
+<meta property="og:title" content="SPECTRA in Nature Machine Intelligence" />
+<meta name="author" content="Marinka Zitnik" />
+<meta property="og:locale" content="en_US" />
+<meta name="description" content="Are biomedical AI models truly as smart as they seem? SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity. SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets." />
+<meta property="og:description" content="Are biomedical AI models truly as smart as they seem? SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity. SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets." />
+<link rel="canonical" href="https://zitniklab.hms.harvard.edu/2024/12/07/SPECTRA/" />
+<meta property="og:url" content="https://zitniklab.hms.harvard.edu/2024/12/07/SPECTRA/" />
+<meta property="og:site_name" content="Zitnik Lab" />
+<meta property="og:type" content="article" />
+<meta property="article:published_time" content="2024-12-07T00:00:00-05:00" />
+<meta name="twitter:card" content="summary" />
+<meta property="twitter:title" content="SPECTRA in Nature Machine Intelligence" />
+<meta name="twitter:site" content="@marinkazitnik" />
+<meta name="twitter:creator" content="@Marinka Zitnik" />
+<script type="application/ld+json">
+{"url":"https://zitniklab.hms.harvard.edu/2024/12/07/SPECTRA/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/2024/12/07/SPECTRA/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"SPECTRA in Nature Machine Intelligence","dateModified":"2024-12-07T00:00:00-05:00","description":"Are biomedical AI models truly as smart as they seem? SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity. SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.","datePublished":"2024-12-07T00:00:00-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+<!-- End Jekyll SEO tag -->
+<script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
+<script>
+  window['ga-disable-UA-162129505-1'] = window.doNotTrack === "1" || navigator.doNotTrack === "1" || navigator.doNotTrack === "yes" || navigator.msDoNotTrack === "1";
+  window.dataLayer = window.dataLayer || [];
+  function gtag(){dataLayer.push(arguments);}
+  gtag('js', new Date());
+  gtag('config', 'UA-162129505-1');
+</script><!-- head scripts --></head>
+
+  <body>
+    
+<nav class="navbar is-primary" >
+    <div class="container">
+        <div class="navbar-brand">
+            <a href="/" class="navbar-item"><b>
+                Zitnik Lab
+            </b></a>
+            <a role="button" class="navbar-burger burger" aria-label="menu" aria-expanded="false" data-target="navMenu">
+                <span aria-hidden="true"></span>
+                <span aria-hidden="true"></span>
+                <span aria-hidden="true"></span>
+            </a>
+        </div>
+        <div class="navbar-menu" id="navMenu">
+            <div class="navbar-start">
+<!--                <a href="/" class="navbar-item "><b>Home</b></a>-->
+                
+                
+                    
+                    <div class="navbar-item has-dropdown is-hoverable">
+                        <a href="/#" class="navbar-link "><b>About</b></a>
+                        <div class="navbar-dropdown">
+                            
+                            <a href="/bio/" class="navbar-item "><b>Bio</b></a>
+                            
+                            <a href="/contact/" class="navbar-item "><b>Contact</b></a>
+                            
+                            <a href="/talks/" class="navbar-item "><b>Recent Talks</b></a>
+                            
+                        </div>
+                    </div>
+                    
+                
+                    
+                <a href="/research/" class="navbar-item "><b>Research</b></a>
+                    
+                
+                    
+                <a href="/publications/" class="navbar-item "><b>Publications</b></a>
+                    
+                
+                    
+                <a href="/people/" class="navbar-item "><b>Members</b></a>
+                    
+                
+                    
+                <a href="/meetings/" class="navbar-item "><b>Education</b></a>
+                    
+                
+                    
+                <a href="/DMAI/" class="navbar-item "><b>DMAI</b></a>
+                    
+                
+                    
+                <a href="/data/" class="navbar-item "><b>Datasets</b></a>
+                    
+                
+                    
+                <a href="/software/" class="navbar-item "><b>AI Models</b></a>
+                    
+                
+                    
+                <a href="https://zitniklab.hms.harvard.edu/TDC/" class="navbar-item "><b>TDC</b></a>
+                    
+                
+                    
+                <a href="/news/" class="navbar-item "><b>News</b></a>
+                    
+                
+                    
+                <a href="/jobs/" class="navbar-item "><b>Join Us</b></a>
+                    
+                
+                
+            </div>
+        </div>
+    </div>
+</nav>
+
+    
+        <section class="hero  is-medium  is-bold is-primary" >
+    <div class="hero-body">
+        <div class="container">
+            <p class="title is-2">SPECTRA in Nature Machine Intelligence</p>
+            <p class="subtitle is-3"></p>
+            
+        </div>
+    </div>
+</section>
+    
+    
+
+
+    <section class="section">
+        <div class="container">
+            <div class="columns">
+                
+                <div class="column is-12">
+                    
+                    
+                    <div class="content">
+
+<!--    <p>Published: Dec 7, 2024 by </p>-->
+    <p>Published: Dec 7, 2024</p>
+
+    <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+</div>
+
+<div class="tags">
+    
+</div>
+
+
+
+                </div>
+                
+            </div>
+        </div>
+    </section>
+    
+        <footer class="footer">
+    <div class="container">
+        
+        
+    </div>
+</footer>
+
+    
+    <script src="/assets/js/app.js" type="text/javascript"></script><!-- footer scripts -->
+<div style="background-color:#A41034">
+        <div class="content is-normal has-text-centered">
+            <p style="color:white;padding-top:20px;padding-bottom:20px;"><a href="https://scholar.harvard.edu/marinka" style="color:white"><b>Zitnik Lab</b></a>
+                &nbsp;&middot;&nbsp; <a href="#" style="color:white"><b>Artificial Intelligence in Medicine and Science</b></a>
+                &nbsp;&middot;&nbsp; <a href="https://harvard.edu" style="color:white"><b>Harvard</b></a>
+                &nbsp;&middot;&nbsp; <a href="https://dbmi.hms.harvard.edu/" style="color:white"><b>Department of Biomedical Informatics</b></a></p>
+        </div>
+</div></body>
+</html>
+
diff --git a/2024/12/07/UnifiedClinicalVocabularyEmbeddings/index.html b/2024/12/07/UnifiedClinicalVocabularyEmbeddings/index.html
new file mode 100644
index 00000000..d11505c1
--- /dev/null
+++ b/2024/12/07/UnifiedClinicalVocabularyEmbeddings/index.html
@@ -0,0 +1,182 @@
+
+<!DOCTYPE html>
+<html>
+  <head>
+    <meta charset="utf-8">
+    <meta name="viewport" content="width=device-width, initial-scale=1">
+    <title>Unified Clinical Vocabulary Embeddings - Zitnik Lab</title>
+    <link rel="stylesheet" href="/assets/css/app.css">
+    <link rel="shortcut icon" type="image/png"
+           href="/favicon.png" 
+    />
+    <script defer src="https://use.fontawesome.com/releases/v5.3.1/js/all.js"></script>
+    <!-- Begin Jekyll SEO tag v2.6.1 -->
+<title>Unified Clinical Vocabulary Embeddings | Zitnik Lab</title>
+<meta name="generator" content="Jekyll v3.8.6" />
+<meta property="og:title" content="Unified Clinical Vocabulary Embeddings" />
+<meta name="author" content="Marinka Zitnik" />
+<meta property="og:locale" content="en_US" />
+<meta name="description" content="New paper: A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies. (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes." />
+<meta property="og:description" content="New paper: A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies. (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes." />
+<link rel="canonical" href="https://zitniklab.hms.harvard.edu/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" />
+<meta property="og:url" content="https://zitniklab.hms.harvard.edu/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" />
+<meta property="og:site_name" content="Zitnik Lab" />
+<meta property="og:type" content="article" />
+<meta property="article:published_time" content="2024-12-07T00:00:00-05:00" />
+<meta name="twitter:card" content="summary" />
+<meta property="twitter:title" content="Unified Clinical Vocabulary Embeddings" />
+<meta name="twitter:site" content="@marinkazitnik" />
+<meta name="twitter:creator" content="@Marinka Zitnik" />
+<script type="application/ld+json">
+{"url":"https://zitniklab.hms.harvard.edu/2024/12/07/UnifiedClinicalVocabularyEmbeddings/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/2024/12/07/UnifiedClinicalVocabularyEmbeddings/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Unified Clinical Vocabulary Embeddings","dateModified":"2024-12-07T00:00:00-05:00","description":"New paper: A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies. (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.","datePublished":"2024-12-07T00:00:00-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+<!-- End Jekyll SEO tag -->
+<script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
+<script>
+  window['ga-disable-UA-162129505-1'] = window.doNotTrack === "1" || navigator.doNotTrack === "1" || navigator.doNotTrack === "yes" || navigator.msDoNotTrack === "1";
+  window.dataLayer = window.dataLayer || [];
+  function gtag(){dataLayer.push(arguments);}
+  gtag('js', new Date());
+  gtag('config', 'UA-162129505-1');
+</script><!-- head scripts --></head>
+
+  <body>
+    
+<nav class="navbar is-primary" >
+    <div class="container">
+        <div class="navbar-brand">
+            <a href="/" class="navbar-item"><b>
+                Zitnik Lab
+            </b></a>
+            <a role="button" class="navbar-burger burger" aria-label="menu" aria-expanded="false" data-target="navMenu">
+                <span aria-hidden="true"></span>
+                <span aria-hidden="true"></span>
+                <span aria-hidden="true"></span>
+            </a>
+        </div>
+        <div class="navbar-menu" id="navMenu">
+            <div class="navbar-start">
+<!--                <a href="/" class="navbar-item "><b>Home</b></a>-->
+                
+                
+                    
+                    <div class="navbar-item has-dropdown is-hoverable">
+                        <a href="/#" class="navbar-link "><b>About</b></a>
+                        <div class="navbar-dropdown">
+                            
+                            <a href="/bio/" class="navbar-item "><b>Bio</b></a>
+                            
+                            <a href="/contact/" class="navbar-item "><b>Contact</b></a>
+                            
+                            <a href="/talks/" class="navbar-item "><b>Recent Talks</b></a>
+                            
+                        </div>
+                    </div>
+                    
+                
+                    
+                <a href="/research/" class="navbar-item "><b>Research</b></a>
+                    
+                
+                    
+                <a href="/publications/" class="navbar-item "><b>Publications</b></a>
+                    
+                
+                    
+                <a href="/people/" class="navbar-item "><b>Members</b></a>
+                    
+                
+                    
+                <a href="/meetings/" class="navbar-item "><b>Education</b></a>
+                    
+                
+                    
+                <a href="/DMAI/" class="navbar-item "><b>DMAI</b></a>
+                    
+                
+                    
+                <a href="/data/" class="navbar-item "><b>Datasets</b></a>
+                    
+                
+                    
+                <a href="/software/" class="navbar-item "><b>AI Models</b></a>
+                    
+                
+                    
+                <a href="https://zitniklab.hms.harvard.edu/TDC/" class="navbar-item "><b>TDC</b></a>
+                    
+                
+                    
+                <a href="/news/" class="navbar-item "><b>News</b></a>
+                    
+                
+                    
+                <a href="/jobs/" class="navbar-item "><b>Join Us</b></a>
+                    
+                
+                
+            </div>
+        </div>
+    </div>
+</nav>
+
+    
+        <section class="hero  is-medium  is-bold is-primary" >
+    <div class="hero-body">
+        <div class="container">
+            <p class="title is-2">Unified Clinical Vocabulary Embeddings</p>
+            <p class="subtitle is-3"></p>
+            
+        </div>
+    </div>
+</section>
+    
+    
+
+
+    <section class="section">
+        <div class="container">
+            <div class="columns">
+                
+                <div class="column is-12">
+                    
+                    
+                    <div class="content">
+
+<!--    <p>Published: Dec 7, 2024 by </p>-->
+    <p>Published: Dec 7, 2024</p>
+
+    <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+</div>
+
+<div class="tags">
+    
+</div>
+
+
+
+                </div>
+                
+            </div>
+        </div>
+    </section>
+    
+        <footer class="footer">
+    <div class="container">
+        
+        
+    </div>
+</footer>
+
+    
+    <script src="/assets/js/app.js" type="text/javascript"></script><!-- footer scripts -->
+<div style="background-color:#A41034">
+        <div class="content is-normal has-text-centered">
+            <p style="color:white;padding-top:20px;padding-bottom:20px;"><a href="https://scholar.harvard.edu/marinka" style="color:white"><b>Zitnik Lab</b></a>
+                &nbsp;&middot;&nbsp; <a href="#" style="color:white"><b>Artificial Intelligence in Medicine and Science</b></a>
+                &nbsp;&middot;&nbsp; <a href="https://harvard.edu" style="color:white"><b>Harvard</b></a>
+                &nbsp;&middot;&nbsp; <a href="https://dbmi.hms.harvard.edu/" style="color:white"><b>Department of Biomedical Informatics</b></a></p>
+        </div>
+</div></body>
+</html>
+
diff --git a/2024/12/16/ProCyon/index.html b/2024/12/16/ProCyon/index.html
new file mode 100644
index 00000000..edf2c861
--- /dev/null
+++ b/2024/12/16/ProCyon/index.html
@@ -0,0 +1,182 @@
+
+<!DOCTYPE html>
+<html>
+  <head>
+    <meta charset="utf-8">
+    <meta name="viewport" content="width=device-width, initial-scale=1">
+    <title>Foundation Model for Protein Phenotypes - Zitnik Lab</title>
+    <link rel="stylesheet" href="/assets/css/app.css">
+    <link rel="shortcut icon" type="image/png"
+           href="/favicon.png" 
+    />
+    <script defer src="https://use.fontawesome.com/releases/v5.3.1/js/all.js"></script>
+    <!-- Begin Jekyll SEO tag v2.6.1 -->
+<title>Foundation Model for Protein Phenotypes | Zitnik Lab</title>
+<meta name="generator" content="Jekyll v3.8.6" />
+<meta property="og:title" content="Foundation Model for Protein Phenotypes" />
+<meta name="author" content="Marinka Zitnik" />
+<meta property="og:locale" content="en_US" />
+<meta name="description" content="New paper: ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes. [Project website] [Code]" />
+<meta property="og:description" content="New paper: ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes. [Project website] [Code]" />
+<link rel="canonical" href="https://zitniklab.hms.harvard.edu/2024/12/16/ProCyon/" />
+<meta property="og:url" content="https://zitniklab.hms.harvard.edu/2024/12/16/ProCyon/" />
+<meta property="og:site_name" content="Zitnik Lab" />
+<meta property="og:type" content="article" />
+<meta property="article:published_time" content="2024-12-16T00:00:00-05:00" />
+<meta name="twitter:card" content="summary" />
+<meta property="twitter:title" content="Foundation Model for Protein Phenotypes" />
+<meta name="twitter:site" content="@marinkazitnik" />
+<meta name="twitter:creator" content="@Marinka Zitnik" />
+<script type="application/ld+json">
+{"url":"https://zitniklab.hms.harvard.edu/2024/12/16/ProCyon/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/2024/12/16/ProCyon/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Foundation Model for Protein Phenotypes","dateModified":"2024-12-16T00:00:00-05:00","description":"New paper: ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes. [Project website] [Code]","datePublished":"2024-12-16T00:00:00-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+<!-- End Jekyll SEO tag -->
+<script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
+<script>
+  window['ga-disable-UA-162129505-1'] = window.doNotTrack === "1" || navigator.doNotTrack === "1" || navigator.doNotTrack === "yes" || navigator.msDoNotTrack === "1";
+  window.dataLayer = window.dataLayer || [];
+  function gtag(){dataLayer.push(arguments);}
+  gtag('js', new Date());
+  gtag('config', 'UA-162129505-1');
+</script><!-- head scripts --></head>
+
+  <body>
+    
+<nav class="navbar is-primary" >
+    <div class="container">
+        <div class="navbar-brand">
+            <a href="/" class="navbar-item"><b>
+                Zitnik Lab
+            </b></a>
+            <a role="button" class="navbar-burger burger" aria-label="menu" aria-expanded="false" data-target="navMenu">
+                <span aria-hidden="true"></span>
+                <span aria-hidden="true"></span>
+                <span aria-hidden="true"></span>
+            </a>
+        </div>
+        <div class="navbar-menu" id="navMenu">
+            <div class="navbar-start">
+<!--                <a href="/" class="navbar-item "><b>Home</b></a>-->
+                
+                
+                    
+                    <div class="navbar-item has-dropdown is-hoverable">
+                        <a href="/#" class="navbar-link "><b>About</b></a>
+                        <div class="navbar-dropdown">
+                            
+                            <a href="/bio/" class="navbar-item "><b>Bio</b></a>
+                            
+                            <a href="/contact/" class="navbar-item "><b>Contact</b></a>
+                            
+                            <a href="/talks/" class="navbar-item "><b>Recent Talks</b></a>
+                            
+                        </div>
+                    </div>
+                    
+                
+                    
+                <a href="/research/" class="navbar-item "><b>Research</b></a>
+                    
+                
+                    
+                <a href="/publications/" class="navbar-item "><b>Publications</b></a>
+                    
+                
+                    
+                <a href="/people/" class="navbar-item "><b>Members</b></a>
+                    
+                
+                    
+                <a href="/meetings/" class="navbar-item "><b>Education</b></a>
+                    
+                
+                    
+                <a href="/DMAI/" class="navbar-item "><b>DMAI</b></a>
+                    
+                
+                    
+                <a href="/data/" class="navbar-item "><b>Datasets</b></a>
+                    
+                
+                    
+                <a href="/software/" class="navbar-item "><b>AI Models</b></a>
+                    
+                
+                    
+                <a href="https://zitniklab.hms.harvard.edu/TDC/" class="navbar-item "><b>TDC</b></a>
+                    
+                
+                    
+                <a href="/news/" class="navbar-item "><b>News</b></a>
+                    
+                
+                    
+                <a href="/jobs/" class="navbar-item "><b>Join Us</b></a>
+                    
+                
+                
+            </div>
+        </div>
+    </div>
+</nav>
+
+    
+        <section class="hero  is-medium  is-bold is-primary" >
+    <div class="hero-body">
+        <div class="container">
+            <p class="title is-2">Foundation Model for Protein Phenotypes</p>
+            <p class="subtitle is-3"></p>
+            
+        </div>
+    </div>
+</section>
+    
+    
+
+
+    <section class="section">
+        <div class="container">
+            <div class="columns">
+                
+                <div class="column is-12">
+                    
+                    
+                    <div class="content">
+
+<!--    <p>Published: Dec 16, 2024 by </p>-->
+    <p>Published: Dec 16, 2024</p>
+
+    <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+</div>
+
+<div class="tags">
+    
+</div>
+
+
+
+                </div>
+                
+            </div>
+        </div>
+    </section>
+    
+        <footer class="footer">
+    <div class="container">
+        
+        
+    </div>
+</footer>
+
+    
+    <script src="/assets/js/app.js" type="text/javascript"></script><!-- footer scripts -->
+<div style="background-color:#A41034">
+        <div class="content is-normal has-text-centered">
+            <p style="color:white;padding-top:20px;padding-bottom:20px;"><a href="https://scholar.harvard.edu/marinka" style="color:white"><b>Zitnik Lab</b></a>
+                &nbsp;&middot;&nbsp; <a href="#" style="color:white"><b>Artificial Intelligence in Medicine and Science</b></a>
+                &nbsp;&middot;&nbsp; <a href="https://harvard.edu" style="color:white"><b>Harvard</b></a>
+                &nbsp;&middot;&nbsp; <a href="https://dbmi.hms.harvard.edu/" style="color:white"><b>Department of Biomedical Informatics</b></a></p>
+        </div>
+</div></body>
+</html>
+
diff --git a/DMAI/index.html b/DMAI/index.html
index d6772830..b27a06ef 100644
--- a/DMAI/index.html
+++ b/DMAI/index.html
@@ -202,6 +202,90 @@ <h2 id="coordinator">Coordinator</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -290,8 +374,8 @@ <h2 id="coordinator">Coordinator</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -678,90 +762,6 @@ <h2 id="coordinator">Coordinator</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/data/index.html b/data/index.html
index 47cfaddb..d5c159c4 100644
--- a/data/index.html
+++ b/data/index.html
@@ -146,6 +146,41 @@
     </div>
 
     
+        <section class="showcase">
+<!--            <figure class="image  is-16by9 ">-->
+<!--                <img src="" />-->
+<!--            </figure>-->
+            <div class="showcase-content">
+                <div class="columns is-centered">
+                    <div class="column is-8-desktop is-12-tablet">
+                        <p class="title">ProCyon-Instruct</p>
+                        <p class="subtitle">Foundation Model for Protein Phenotypes</p>
+
+                        
+                        
+                        <div class="content">
+                            <p><p>ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes across five interrelated knowledge domains: molecular functions, therapeutic mechanisms, disease associations, functional protein domains, and molecular interactions. To train ProCyon, we created ProCyon-Instruct, a dataset of 33 million protein phenotype instructions, representing a comprehensive resource for multiscale protein phenotypes.</p>
+</p>
+                        </div>
+
+                        
+                        
+
+                        
+
+                        
+                        <a href="https://zitniklab.hms.harvard.edu/ProCyon" class="button is-primary">
+                            View ProCyon Website
+                        </a>
+                        
+                        
+                                                
+                    </div>
+                </div>
+
+            </div>
+        </section>
+    
         <section class="showcase">
 <!--            <figure class="image  is-16by9 ">-->
 <!--                <img src="" />-->
@@ -780,6 +815,90 @@
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -868,8 +987,8 @@
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -1256,90 +1375,6 @@
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/feed.xml b/feed.xml
index e7c61d9f..6c458642 100644
--- a/feed.xml
+++ b/feed.xml
@@ -1 +1 @@
-<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="3.8.6">Jekyll</generator><link href="https://zitniklab.hms.harvard.edu/feed.xml" rel="self" type="application/atom+xml" /><link href="https://zitniklab.hms.harvard.edu/" rel="alternate" type="text/html" /><updated>2024-12-02T21:40:57-05:00</updated><id>https://zitniklab.hms.harvard.edu/feed.xml</id><title type="html">Zitnik Lab</title><subtitle>Harvard Machine Learning for Medicine and Science</subtitle><author><name>Marinka Zitnik</name></author><entry><title type="html">Ayush Noori Selected as a Rhodes Scholar</title><link href="https://zitniklab.hms.harvard.edu/2024/11/17/RhodesScholar/" rel="alternate" type="text/html" title="Ayush Noori Selected as a Rhodes Scholar" /><published>2024-11-17T00:00:00-05:00</published><updated>2024-11-17T00:00:00-05:00</updated><id>https://zitniklab.hms.harvard.edu/2024/11/17/RhodesScholar</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/11/17/RhodesScholar/">&lt;p&gt;Congratulations to &lt;a href=&quot;https://www.thecrimson.com/article/2024/11/18/rhodes-scholars-announced-harvard-students/&quot;&gt;Ayush Noori on being named a Rhodes Scholar&lt;/a&gt;! Such an incredible achievement!&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">Congratulations to Ayush Noori on being named a Rhodes Scholar! Such an incredible achievement!</summary></entry><entry><title type="html">PocketGen in Nature Machine Intelligence</title><link href="https://zitniklab.hms.harvard.edu/2024/11/15/PocketGen/" rel="alternate" type="text/html" title="PocketGen in Nature Machine Intelligence" /><published>2024-11-15T00:00:00-05:00</published><updated>2024-11-15T00:00:00-05:00</updated><id>https://zitniklab.hms.harvard.edu/2024/11/15/PocketGen</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/11/15/PocketGen/">&lt;p&gt;PocketGen is a &lt;a href=&quot;https://www.nature.com/articles/s42256-024-00920-9&quot;&gt;multimodal sequence-structure generative model for designing full-atom ligand-binding protein pockets.&lt;/a&gt;&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">PocketGen is a multimodal sequence-structure generative model for designing full-atom ligand-binding protein pockets.</summary></entry><entry><title type="html">Biomedical AI Agents in Cell</title><link href="https://zitniklab.hms.harvard.edu/2024/11/01/AIScientist/" rel="alternate" type="text/html" title="Biomedical AI Agents in Cell" /><published>2024-11-01T00:00:00-04:00</published><updated>2024-11-01T00:00:00-04:00</updated><id>https://zitniklab.hms.harvard.edu/2024/11/01/AIScientist</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/11/01/AIScientist/">&lt;p&gt;We envision “AI scientists” as &lt;a href=&quot;https://www.cell.com/cell/fulltext/S0092-8674(24)01070-5&quot;&gt;AI agents capable of skeptical learning and reasoning that empower biomedical research by integrating ML models and biomedical tools with experimental platforms.&lt;/a&gt;&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">We envision “AI scientists” as AI agents capable of skeptical learning and reasoning that empower biomedical research by integrating ML models and biomedical tools with experimental platforms.</summary></entry><entry><title type="html">Activity Cliffs in Molecular Property Prediction</title><link href="https://zitniklab.hms.harvard.edu/2024/10/19/ACAnet/" rel="alternate" type="text/html" title="Activity Cliffs in Molecular Property Prediction" /><published>2024-10-19T00:00:00-04:00</published><updated>2024-10-19T00:00:00-04:00</updated><id>https://zitniklab.hms.harvard.edu/2024/10/19/ACAnet</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/10/19/ACAnet/">&lt;p&gt;New paper on &lt;a href=&quot;https://chemrxiv.org/engage/chemrxiv/article-details/6470c963be16ad5c57f5526c&quot;&gt;activity-cliff informed contrastive learning for molecular property prediction.&lt;/a&gt;&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">New paper on activity-cliff informed contrastive learning for molecular property prediction.</summary></entry><entry><title type="html">Knowledge Graph Agent for Medical Reasoning</title><link href="https://zitniklab.hms.harvard.edu/2024/10/09/KGARevion/" rel="alternate" type="text/html" title="Knowledge Graph Agent for Medical Reasoning" /><published>2024-10-09T00:00:00-04:00</published><updated>2024-10-09T00:00:00-04:00</updated><id>https://zitniklab.hms.harvard.edu/2024/10/09/KGARevion</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/10/09/KGARevion/">&lt;p&gt;New paper introducing a &lt;a href=&quot;https://arxiv.org/abs/2410.04660&quot;&gt;knowledge graph agent for complex, knowledge-intensive medical reasoning.&lt;/a&gt;&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">New paper introducing a knowledge graph agent for complex, knowledge-intensive medical reasoning.</summary></entry><entry><title type="html">Three Papers Accepted to NeurIPS</title><link href="https://zitniklab.hms.harvard.edu/2024/09/27/NeurIPS2024Papers/" rel="alternate" type="text/html" title="Three Papers Accepted to NeurIPS" /><published>2024-09-27T00:00:00-04:00</published><updated>2024-09-27T00:00:00-04:00</updated><id>https://zitniklab.hms.harvard.edu/2024/09/27/NeurIPS2024Papers</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/09/27/NeurIPS2024Papers/">&lt;p&gt;Exciting projects include a unified multi-task time series model, a flow-matching approach for generating protein pockets using geometric priors, and a tokenization method that produces invariant molecular representations for integration into large language models.&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">Exciting projects include a unified multi-task time series model, a flow-matching approach for generating protein pockets using geometric priors, and a tokenization method that produces invariant molecular representations for integration into large language models.</summary></entry><entry><title type="html">TxGNN Published in Nature Medicine</title><link href="https://zitniklab.hms.harvard.edu/2024/09/25/TxGNNNatureMedicine/" rel="alternate" type="text/html" title="TxGNN Published in Nature Medicine" /><published>2024-09-25T00:00:00-04:00</published><updated>2024-09-25T00:00:00-04:00</updated><id>https://zitniklab.hms.harvard.edu/2024/09/25/TxGNNNatureMedicine</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/09/25/TxGNNNatureMedicine/">&lt;p&gt;Graph foundation model for drug repurposing published in &lt;a href=&quot;https://www.nature.com/articles/s41591-024-03233-x&quot;&gt;Nature Medicine&lt;/a&gt;. &lt;a href=&quot;https://news.harvard.edu/gazette/story/2024/09/using-ai-to-repurpose-existing-drugs-for-treatment-of-rare-diseases/&quot;&gt;[Harvard Gazette]&lt;/a&gt; &lt;a href=&quot;https://hms.harvard.edu/news/researchers-harness-ai-repurpose-existing-drugs-treatment-rare-diseases&quot;&gt;[Harvard Medicine News]&lt;/a&gt; &lt;a href=&quot;https://www.forbes.com/sites/greglicholai/2024/09/26/ai-tool-speeds-drug-repurposing-and-its-free/&quot;&gt;[Forbes]&lt;/a&gt; &lt;a href=&quot;https://developer.nvidia.com/blog/ai-uses-zero-shot-learning-to-find-existing-drugs-for-treating-rare-diseases/&quot;&gt;[NVIDIA]&lt;/a&gt; &lt;a href=&quot;https://kempnerinstitute.harvard.edu/news/txgnn-ai-dr-house-for-disease-treatment/&quot;&gt;[Kempner Institute]&lt;/a&gt; &lt;a href=&quot;https://www.thecrimson.com/article/2024/10/9/drug-repurposing-ai-model/&quot;&gt;[Harvard Crimson]&lt;/a&gt;&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">Graph foundation model for drug repurposing published in Nature Medicine. [Harvard Gazette] [Harvard Medicine News] [Forbes] [NVIDIA] [Kempner Institute] [Harvard Crimson]</summary></entry><entry><title type="html">Graph AI in Medicine</title><link href="https://zitniklab.hms.harvard.edu/2024/08/28/GraphAI/" rel="alternate" type="text/html" title="Graph AI in Medicine" /><published>2024-08-28T00:00:00-04:00</published><updated>2024-08-28T00:00:00-04:00</updated><id>https://zitniklab.hms.harvard.edu/2024/08/28/GraphAI</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/08/28/GraphAI/">&lt;p&gt;Excited to share a new perspective on &lt;a href=&quot;https://go.shr.lc/4g0KpLV&quot;&gt;Graph Artificial Intelligence in Medicine&lt;/a&gt; in Annual Reviews.&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">Excited to share a new perspective on Graph Artificial Intelligence in Medicine in Annual Reviews.</summary></entry><entry><title type="html">How Proteins Behave in Context</title><link href="https://zitniklab.hms.harvard.edu/2024/08/15/PINNACLENews/" rel="alternate" type="text/html" title="How Proteins Behave in Context" /><published>2024-08-15T00:00:00-04:00</published><updated>2024-08-15T00:00:00-04:00</updated><id>https://zitniklab.hms.harvard.edu/2024/08/15/PINNACLENews</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/08/15/PINNACLENews/">&lt;p&gt;&lt;a href=&quot;https://hms.harvard.edu/news/new-ai-tool-captures-how-proteins-behave-context&quot;&gt;Harvard Medicine News&lt;/a&gt; on our new AI tool that captures how proteins behave in context. &lt;a href=&quot;https://kempnerinstitute.harvard.edu/research/deeper-learning/context-matters-for-foundation-models-in-biology/&quot;&gt;Kempner Institute&lt;/a&gt; on how context matters for foundation models in biology.&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">Harvard Medicine News on our new AI tool that captures how proteins behave in context. Kempner Institute on how context matters for foundation models in biology.</summary></entry><entry><title type="html">PINNACLE in Nature Methods</title><link href="https://zitniklab.hms.harvard.edu/2024/07/27/PINNACLENatureMethods/" rel="alternate" type="text/html" title="PINNACLE in Nature Methods" /><published>2024-07-27T00:00:00-04:00</published><updated>2024-07-27T00:00:00-04:00</updated><id>https://zitniklab.hms.harvard.edu/2024/07/27/PINNACLENatureMethods</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/07/27/PINNACLENatureMethods/">&lt;p&gt;PINNACLE contextual AI model is published in Nature Methods. &lt;a href=&quot;https://www.nature.com/articles/s41592-024-02341-3&quot;&gt;Paper.&lt;/a&gt; &lt;a href=&quot;https://www.nature.com/articles/s41592-024-02342-2&quot;&gt;Research Briefing.&lt;/a&gt; &lt;a href=&quot;https://zitniklab.hms.harvard.edu/projects/PINNACLE/&quot;&gt;Project website.&lt;/a&gt;&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">PINNACLE contextual AI model is published in Nature Methods. Paper. Research Briefing. Project website.</summary></entry></feed>
\ No newline at end of file
+<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="3.8.6">Jekyll</generator><link href="https://zitniklab.hms.harvard.edu/feed.xml" rel="self" type="application/atom+xml" /><link href="https://zitniklab.hms.harvard.edu/" rel="alternate" type="text/html" /><updated>2024-12-16T01:28:04-05:00</updated><id>https://zitniklab.hms.harvard.edu/feed.xml</id><title type="html">Zitnik Lab</title><subtitle>Harvard Machine Learning for Medicine and Science</subtitle><author><name>Marinka Zitnik</name></author><entry><title type="html">Foundation Model for Protein Phenotypes</title><link href="https://zitniklab.hms.harvard.edu/2024/12/16/ProCyon/" rel="alternate" type="text/html" title="Foundation Model for Protein Phenotypes" /><published>2024-12-16T00:00:00-05:00</published><updated>2024-12-16T00:00:00-05:00</updated><id>https://zitniklab.hms.harvard.edu/2024/12/16/ProCyon</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/12/16/ProCyon/">&lt;p&gt;New paper: &lt;a href=&quot;https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1&quot;&gt;ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes&lt;/a&gt;. &lt;a href=&quot;https://zitniklab.hms.harvard.edu/ProCyon/&quot;&gt;[Project website]&lt;/a&gt; &lt;a href=&quot;https://github.com/mims-harvard/ProCyon&quot;&gt;[Code]&lt;/a&gt;&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">New paper: ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes. [Project website] [Code]</summary></entry><entry><title type="html">SPECTRA in Nature Machine Intelligence</title><link href="https://zitniklab.hms.harvard.edu/2024/12/07/SPECTRA/" rel="alternate" type="text/html" title="SPECTRA in Nature Machine Intelligence" /><published>2024-12-07T00:00:00-05:00</published><updated>2024-12-07T00:00:00-05:00</updated><id>https://zitniklab.hms.harvard.edu/2024/12/07/SPECTRA</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/12/07/SPECTRA/">&lt;p&gt;Are biomedical AI models truly as smart as they seem? &lt;a href=&quot;https://www.nature.com/articles/s42256-024-00931-6&quot;&gt;SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.&lt;/a&gt; SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">Are biomedical AI models truly as smart as they seem? SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity. SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</summary></entry><entry><title type="html">Unified Clinical Vocabulary Embeddings</title><link href="https://zitniklab.hms.harvard.edu/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" rel="alternate" type="text/html" title="Unified Clinical Vocabulary Embeddings" /><published>2024-12-07T00:00:00-05:00</published><updated>2024-12-07T00:00:00-05:00</updated><id>https://zitniklab.hms.harvard.edu/2024/12/07/UnifiedClinicalVocabularyEmbeddings</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">&lt;p&gt;New paper: &lt;a href=&quot;https://www.medrxiv.org/content/10.1101/2024.12.03.24318322&quot;&gt;A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.&lt;/a&gt; (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">New paper: A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies. (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</summary></entry><entry><title type="html">Ayush Noori Selected as a Rhodes Scholar</title><link href="https://zitniklab.hms.harvard.edu/2024/11/17/RhodesScholar/" rel="alternate" type="text/html" title="Ayush Noori Selected as a Rhodes Scholar" /><published>2024-11-17T00:00:00-05:00</published><updated>2024-11-17T00:00:00-05:00</updated><id>https://zitniklab.hms.harvard.edu/2024/11/17/RhodesScholar</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/11/17/RhodesScholar/">&lt;p&gt;Congratulations to &lt;a href=&quot;https://www.thecrimson.com/article/2024/11/18/rhodes-scholars-announced-harvard-students/&quot;&gt;Ayush Noori on being named a Rhodes Scholar&lt;/a&gt;! Such an incredible achievement!&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">Congratulations to Ayush Noori on being named a Rhodes Scholar! Such an incredible achievement!</summary></entry><entry><title type="html">PocketGen in Nature Machine Intelligence</title><link href="https://zitniklab.hms.harvard.edu/2024/11/15/PocketGen/" rel="alternate" type="text/html" title="PocketGen in Nature Machine Intelligence" /><published>2024-11-15T00:00:00-05:00</published><updated>2024-11-15T00:00:00-05:00</updated><id>https://zitniklab.hms.harvard.edu/2024/11/15/PocketGen</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/11/15/PocketGen/">&lt;p&gt;PocketGen is a &lt;a href=&quot;https://www.nature.com/articles/s42256-024-00920-9&quot;&gt;multimodal sequence-structure generative model for designing full-atom ligand-binding protein pockets.&lt;/a&gt;&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">PocketGen is a multimodal sequence-structure generative model for designing full-atom ligand-binding protein pockets.</summary></entry><entry><title type="html">Biomedical AI Agents in Cell</title><link href="https://zitniklab.hms.harvard.edu/2024/11/01/AIScientist/" rel="alternate" type="text/html" title="Biomedical AI Agents in Cell" /><published>2024-11-01T00:00:00-04:00</published><updated>2024-11-01T00:00:00-04:00</updated><id>https://zitniklab.hms.harvard.edu/2024/11/01/AIScientist</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/11/01/AIScientist/">&lt;p&gt;We envision “AI scientists” as &lt;a href=&quot;https://www.cell.com/cell/fulltext/S0092-8674(24)01070-5&quot;&gt;AI agents capable of skeptical learning and reasoning that empower biomedical research by integrating ML models and biomedical tools with experimental platforms.&lt;/a&gt;&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">We envision “AI scientists” as AI agents capable of skeptical learning and reasoning that empower biomedical research by integrating ML models and biomedical tools with experimental platforms.</summary></entry><entry><title type="html">Activity Cliffs in Molecular Properties</title><link href="https://zitniklab.hms.harvard.edu/2024/10/19/ACAnet/" rel="alternate" type="text/html" title="Activity Cliffs in Molecular Properties" /><published>2024-10-19T00:00:00-04:00</published><updated>2024-10-19T00:00:00-04:00</updated><id>https://zitniklab.hms.harvard.edu/2024/10/19/ACAnet</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/10/19/ACAnet/">&lt;p&gt;New paper on &lt;a href=&quot;https://chemrxiv.org/engage/chemrxiv/article-details/6470c963be16ad5c57f5526c&quot;&gt;activity-cliff informed contrastive learning for molecular property prediction.&lt;/a&gt;&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">New paper on activity-cliff informed contrastive learning for molecular property prediction.</summary></entry><entry><title type="html">Knowledge Graph Agent for Medical Reasoning</title><link href="https://zitniklab.hms.harvard.edu/2024/10/09/KGARevion/" rel="alternate" type="text/html" title="Knowledge Graph Agent for Medical Reasoning" /><published>2024-10-09T00:00:00-04:00</published><updated>2024-10-09T00:00:00-04:00</updated><id>https://zitniklab.hms.harvard.edu/2024/10/09/KGARevion</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/10/09/KGARevion/">&lt;p&gt;New paper introducing a &lt;a href=&quot;https://arxiv.org/abs/2410.04660&quot;&gt;knowledge graph agent for complex, knowledge-intensive medical reasoning.&lt;/a&gt;&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">New paper introducing a knowledge graph agent for complex, knowledge-intensive medical reasoning.</summary></entry><entry><title type="html">Three Papers Accepted to NeurIPS</title><link href="https://zitniklab.hms.harvard.edu/2024/09/27/NeurIPS2024Papers/" rel="alternate" type="text/html" title="Three Papers Accepted to NeurIPS" /><published>2024-09-27T00:00:00-04:00</published><updated>2024-09-27T00:00:00-04:00</updated><id>https://zitniklab.hms.harvard.edu/2024/09/27/NeurIPS2024Papers</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/09/27/NeurIPS2024Papers/">&lt;p&gt;Exciting projects include a unified multi-task time series model, a flow-matching approach for generating protein pockets using geometric priors, and a tokenization method that produces invariant molecular representations for integration into large language models.&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">Exciting projects include a unified multi-task time series model, a flow-matching approach for generating protein pockets using geometric priors, and a tokenization method that produces invariant molecular representations for integration into large language models.</summary></entry><entry><title type="html">TxGNN Published in Nature Medicine</title><link href="https://zitniklab.hms.harvard.edu/2024/09/25/TxGNNNatureMedicine/" rel="alternate" type="text/html" title="TxGNN Published in Nature Medicine" /><published>2024-09-25T00:00:00-04:00</published><updated>2024-09-25T00:00:00-04:00</updated><id>https://zitniklab.hms.harvard.edu/2024/09/25/TxGNNNatureMedicine</id><content type="html" xml:base="https://zitniklab.hms.harvard.edu/2024/09/25/TxGNNNatureMedicine/">&lt;p&gt;Graph foundation model for drug repurposing published in &lt;a href=&quot;https://www.nature.com/articles/s41591-024-03233-x&quot;&gt;Nature Medicine&lt;/a&gt;. &lt;a href=&quot;https://news.harvard.edu/gazette/story/2024/09/using-ai-to-repurpose-existing-drugs-for-treatment-of-rare-diseases/&quot;&gt;[Harvard Gazette]&lt;/a&gt; &lt;a href=&quot;https://hms.harvard.edu/news/researchers-harness-ai-repurpose-existing-drugs-treatment-rare-diseases&quot;&gt;[Harvard Medicine News]&lt;/a&gt; &lt;a href=&quot;https://www.forbes.com/sites/greglicholai/2024/09/26/ai-tool-speeds-drug-repurposing-and-its-free/&quot;&gt;[Forbes]&lt;/a&gt; &lt;a href=&quot;https://developer.nvidia.com/blog/ai-uses-zero-shot-learning-to-find-existing-drugs-for-treating-rare-diseases/&quot;&gt;[NVIDIA]&lt;/a&gt; &lt;a href=&quot;https://kempnerinstitute.harvard.edu/news/txgnn-ai-dr-house-for-disease-treatment/&quot;&gt;[Kempner Institute]&lt;/a&gt; &lt;a href=&quot;https://www.thecrimson.com/article/2024/10/9/drug-repurposing-ai-model/&quot;&gt;[Harvard Crimson]&lt;/a&gt;&lt;/p&gt;</content><author><name>Marinka Zitnik</name></author><summary type="html">Graph foundation model for drug repurposing published in Nature Medicine. [Harvard Gazette] [Harvard Medicine News] [Forbes] [NVIDIA] [Kempner Institute] [Harvard Crimson]</summary></entry></feed>
\ No newline at end of file
diff --git a/img/SPECTRA-overview.png b/img/SPECTRA-overview.png
index f420ed61..1d690f23 100644
Binary files a/img/SPECTRA-overview.png and b/img/SPECTRA-overview.png differ
diff --git a/img/aarthi_venkat.png b/img/aarthi_venkat.png
new file mode 100644
index 00000000..3c5c5c6a
Binary files /dev/null and b/img/aarthi_venkat.png differ
diff --git a/img/katya_ivshina.png b/img/katya_ivshina.png
new file mode 100644
index 00000000..d312fe78
Binary files /dev/null and b/img/katya_ivshina.png differ
diff --git a/img/michael_sun.png b/img/michael_sun.png
new file mode 100644
index 00000000..9f0a74f0
Binary files /dev/null and b/img/michael_sun.png differ
diff --git a/index.html b/index.html
index cf141ab2..e68f94ce 100644
--- a/index.html
+++ b/index.html
@@ -177,6 +177,90 @@ <h4 class="has-text-white">AI for Science | Therapeutic Science</h4>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -265,8 +349,8 @@ <h4 class="has-text-white">AI for Science | Therapeutic Science</h4>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -653,90 +737,6 @@ <h4 class="has-text-white">AI for Science | Therapeutic Science</h4>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/jobs/index.html b/jobs/index.html
index 60a6c2a6..cd4e27f6 100644
--- a/jobs/index.html
+++ b/jobs/index.html
@@ -259,6 +259,90 @@ <h2 id="visitors-interns-and-short-term-students">Visitors, interns, and short-t
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -347,8 +431,8 @@ <h2 id="visitors-interns-and-short-term-students">Visitors, interns, and short-t
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -735,90 +819,6 @@ <h2 id="visitors-interns-and-short-term-students">Visitors, interns, and short-t
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/meetings/index.html b/meetings/index.html
index 5ce5f251..9524ffc7 100644
--- a/meetings/index.html
+++ b/meetings/index.html
@@ -594,6 +594,90 @@ <h3 id="biomedical-data-fusion-embc-and-bc2-2015">Biomedical Data Fusion (EMBC a
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -682,8 +766,8 @@ <h3 id="biomedical-data-fusion-embc-and-bc2-2015">Biomedical Data Fusion (EMBC a
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -1070,90 +1154,6 @@ <h3 id="biomedical-data-fusion-embc-and-bc2-2015">Biomedical Data Fusion (EMBC a
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/news/index.html b/news/index.html
index d6d67629..03de2079 100644
--- a/news/index.html
+++ b/news/index.html
@@ -170,6 +170,90 @@
 </nav>
     </div>
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -258,8 +342,8 @@
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -1534,94 +1618,6 @@
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2023/02/08/RaincoatPreprint/">New Preprint on Distribution Shifts</a>-->
-        <p class="card-header-title">Feb 2023: &nbsp; <span class="has-text-primary">New Preprint on Distribution Shifts</span></p>
-<!--        <p class="card-header-item">Feb 2023</p>-->
-<!--        <p class="card-footer-item">Feb 8, 2023</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>New preprint on <a href="https://arxiv.org/abs/2302.03133">domain adaptation for time series under feature and label shifts.</a> <a href="/projects/Raincoat/">Project website.</a></p>
-
-</p>-->
-            <p>New preprint on <a href="https://arxiv.org/abs/2302.03133">domain adaptation for time series under feature and label shifts.</a> <a href="/projects/Raincoat/">Project website.</a></p>
-
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2023/02/08/RaincoatPreprint/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Feb 8, 2023</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2023/02/01/PrimeKG/">PrimeKG published in Scientific Data</a>-->
-        <p class="card-header-title">Feb 2023: &nbsp; <span class="has-text-primary">PrimeKG published in Scientific Data</span></p>
-<!--        <p class="card-header-item">Feb 2023</p>-->
-<!--        <p class="card-footer-item">Feb 1, 2023</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://www.nature.com/articles/s41597-023-01960-3">Our multimodal knowledge graph for precision medicine</a> is published in Scientific Data. <a href="/projects/PrimeKG/">Project website.</a></p>
-
-</p>-->
-            <p><a href="https://www.nature.com/articles/s41597-023-01960-3">Our multimodal knowledge graph for precision medicine</a> is published in Scientific Data. <a href="/projects/PrimeKG/">Project website.</a></p>
-
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2023/02/01/PrimeKG/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Feb 1, 2023</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2023/01/20/GNNDelete/">GNNDelete published at ICLR 2023</a>-->
-        <p class="card-header-title">Jan 2023: &nbsp; <span class="has-text-primary">GNNDelete published at ICLR 2023</span></p>
-<!--        <p class="card-header-item">Jan 2023</p>-->
-<!--        <p class="card-footer-item">Jan 20, 2023</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>New paper on <a href="https://openreview.net/pdf?id=X9yCkmT5Qrl">machine unlearning for graph neural networks</a> accepted at <a href="https://iclr.cc/">ICLR 2023.</a> <a href="/projects/GNNDelete/">Project website.</a></p>
-</p>-->
-            <p>New paper on <a href="https://openreview.net/pdf?id=X9yCkmT5Qrl">machine unlearning for graph neural networks</a> accepted at <a href="https://iclr.cc/">ICLR 2023.</a> <a href="/projects/GNNDelete/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2023/01/20/GNNDelete/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Jan 20, 2023</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
     <div class="column is-12">
             <nav class="pagination is-centered">
     
diff --git a/news/page2/index.html b/news/page2/index.html
index 53e953a2..ac2641af 100644
--- a/news/page2/index.html
+++ b/news/page2/index.html
@@ -171,6 +171,94 @@
 </nav>
     </div>
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2023/02/08/RaincoatPreprint/">New Preprint on Distribution Shifts</a>-->
+        <p class="card-header-title">Feb 2023: &nbsp; <span class="has-text-primary">New Preprint on Distribution Shifts</span></p>
+<!--        <p class="card-header-item">Feb 2023</p>-->
+<!--        <p class="card-footer-item">Feb 8, 2023</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New preprint on <a href="https://arxiv.org/abs/2302.03133">domain adaptation for time series under feature and label shifts.</a> <a href="/projects/Raincoat/">Project website.</a></p>
+
+</p>-->
+            <p>New preprint on <a href="https://arxiv.org/abs/2302.03133">domain adaptation for time series under feature and label shifts.</a> <a href="/projects/Raincoat/">Project website.</a></p>
+
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2023/02/08/RaincoatPreprint/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Feb 8, 2023</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2023/02/01/PrimeKG/">PrimeKG published in Scientific Data</a>-->
+        <p class="card-header-title">Feb 2023: &nbsp; <span class="has-text-primary">PrimeKG published in Scientific Data</span></p>
+<!--        <p class="card-header-item">Feb 2023</p>-->
+<!--        <p class="card-footer-item">Feb 1, 2023</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p><a href="https://www.nature.com/articles/s41597-023-01960-3">Our multimodal knowledge graph for precision medicine</a> is published in Scientific Data. <a href="/projects/PrimeKG/">Project website.</a></p>
+
+</p>-->
+            <p><a href="https://www.nature.com/articles/s41597-023-01960-3">Our multimodal knowledge graph for precision medicine</a> is published in Scientific Data. <a href="/projects/PrimeKG/">Project website.</a></p>
+
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2023/02/01/PrimeKG/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Feb 1, 2023</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2023/01/20/GNNDelete/">GNNDelete published at ICLR 2023</a>-->
+        <p class="card-header-title">Jan 2023: &nbsp; <span class="has-text-primary">GNNDelete published at ICLR 2023</span></p>
+<!--        <p class="card-header-item">Jan 2023</p>-->
+<!--        <p class="card-footer-item">Jan 20, 2023</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper on <a href="https://openreview.net/pdf?id=X9yCkmT5Qrl">machine unlearning for graph neural networks</a> accepted at <a href="https://iclr.cc/">ICLR 2023.</a> <a href="/projects/GNNDelete/">Project website.</a></p>
+</p>-->
+            <p>New paper on <a href="https://openreview.net/pdf?id=X9yCkmT5Qrl">machine unlearning for graph neural networks</a> accepted at <a href="https://iclr.cc/">ICLR 2023.</a> <a href="/projects/GNNDelete/">Project website.</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2023/01/20/GNNDelete/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Jan 20, 2023</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -1487,90 +1575,6 @@
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2021/08/03/NeurIPS-AI-Science/">AI for Science at NeurIPS</a>-->
-        <p class="card-header-title">Aug 2021: &nbsp; <span class="has-text-primary">AI for Science at NeurIPS</span></p>
-<!--        <p class="card-header-item">Aug 2021</p>-->
-<!--        <p class="card-footer-item">Aug 3, 2021</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We are organizing the <a href="https://ai4sciencecommunity.github.io/">AI for Science</a> workshop at NeurIPS 2021 and have a stellar lineup of invited speakers.</p>
-</p>-->
-            <p>We are organizing the <a href="https://ai4sciencecommunity.github.io/">AI for Science</a> workshop at NeurIPS 2021 and have a stellar lineup of invited speakers.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2021/08/03/NeurIPS-AI-Science/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Aug 3, 2021</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2021/08/02/WCB-best-poster/">Best Poster Award at ICML Comp Biology</a>-->
-        <p class="card-header-title">Aug 2021: &nbsp; <span class="has-text-primary">Best Poster Award at ICML Comp Biology</span></p>
-<!--        <p class="card-header-item">Aug 2021</p>-->
-<!--        <p class="card-footer-item">Aug 2, 2021</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Congratulations to Michelle for winning the Best Poster Award for her work on <a href="https://arxiv.org/abs/2106.02246">deep contextual learners for protein networks</a> at the <a href="https://icml-compbio.github.io/">ICML Workshop on Computational Biology.</a></p>
-</p>-->
-            <p>Congratulations to Michelle for winning the Best Poster Award for her work on <a href="https://arxiv.org/abs/2106.02246">deep contextual learners for protein networks</a> at the <a href="https://icml-compbio.github.io/">ICML Workshop on Computational Biology.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2021/08/02/WCB-best-poster/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Aug 2, 2021</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2021/07/24/IMLH-best-paper/">Best Paper Award at ICML Interpretable ML</a>-->
-        <p class="card-header-title">Jul 2021: &nbsp; <span class="has-text-primary">Best Paper Award at ICML Interpretable ML</span></p>
-<!--        <p class="card-header-item">Jul 2021</p>-->
-<!--        <p class="card-footer-item">Jul 24, 2021</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Our short paper on Interactive Visual Explanations for Deep Drug Repurposing received the Best Paper Award at the <a href="https://sites.google.com/view/imlh2021/program?authuser=0">ICML Interpretable ML in Healthcare Workshop</a>. Stay tuned for more news on this evolving project.</p>
-</p>-->
-            <p>Our short paper on Interactive Visual Explanations for Deep Drug Repurposing received the Best Paper Award at the <a href="https://sites.google.com/view/imlh2021/program?authuser=0">ICML Interpretable ML in Healthcare Workshop</a>. Stay tuned for more news on this evolving project.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2021/07/24/IMLH-best-paper/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Jul 24, 2021</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
     <div class="column is-12">
             <nav class="pagination is-centered">
     
diff --git a/news/page3/index.html b/news/page3/index.html
index edfd131d..74121966 100644
--- a/news/page3/index.html
+++ b/news/page3/index.html
@@ -170,6 +170,90 @@
 </nav>
     </div>
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2021/08/03/NeurIPS-AI-Science/">AI for Science at NeurIPS</a>-->
+        <p class="card-header-title">Aug 2021: &nbsp; <span class="has-text-primary">AI for Science at NeurIPS</span></p>
+<!--        <p class="card-header-item">Aug 2021</p>-->
+<!--        <p class="card-footer-item">Aug 3, 2021</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>We are organizing the <a href="https://ai4sciencecommunity.github.io/">AI for Science</a> workshop at NeurIPS 2021 and have a stellar lineup of invited speakers.</p>
+</p>-->
+            <p>We are organizing the <a href="https://ai4sciencecommunity.github.io/">AI for Science</a> workshop at NeurIPS 2021 and have a stellar lineup of invited speakers.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2021/08/03/NeurIPS-AI-Science/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Aug 3, 2021</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2021/08/02/WCB-best-poster/">Best Poster Award at ICML Comp Biology</a>-->
+        <p class="card-header-title">Aug 2021: &nbsp; <span class="has-text-primary">Best Poster Award at ICML Comp Biology</span></p>
+<!--        <p class="card-header-item">Aug 2021</p>-->
+<!--        <p class="card-footer-item">Aug 2, 2021</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Congratulations to Michelle for winning the Best Poster Award for her work on <a href="https://arxiv.org/abs/2106.02246">deep contextual learners for protein networks</a> at the <a href="https://icml-compbio.github.io/">ICML Workshop on Computational Biology.</a></p>
+</p>-->
+            <p>Congratulations to Michelle for winning the Best Poster Award for her work on <a href="https://arxiv.org/abs/2106.02246">deep contextual learners for protein networks</a> at the <a href="https://icml-compbio.github.io/">ICML Workshop on Computational Biology.</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2021/08/02/WCB-best-poster/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Aug 2, 2021</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2021/07/24/IMLH-best-paper/">Best Paper Award at ICML Interpretable ML</a>-->
+        <p class="card-header-title">Jul 2021: &nbsp; <span class="has-text-primary">Best Paper Award at ICML Interpretable ML</span></p>
+<!--        <p class="card-header-item">Jul 2021</p>-->
+<!--        <p class="card-footer-item">Jul 24, 2021</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Our short paper on Interactive Visual Explanations for Deep Drug Repurposing received the Best Paper Award at the <a href="https://sites.google.com/view/imlh2021/program?authuser=0">ICML Interpretable ML in Healthcare Workshop</a>. Stay tuned for more news on this evolving project.</p>
+</p>-->
+            <p>Our short paper on Interactive Visual Explanations for Deep Drug Repurposing received the Best Paper Award at the <a href="https://sites.google.com/view/imlh2021/program?authuser=0">ICML Interpretable ML in Healthcare Workshop</a>. Stay tuned for more news on this evolving project.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2021/07/24/IMLH-best-paper/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Jul 24, 2021</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
diff --git a/people/index.html b/people/index.html
index bcf3522e..ee1cf9da 100644
--- a/people/index.html
+++ b/people/index.html
@@ -208,6 +208,35 @@
   
   
   
+  <div class="column is-4-desktop is-6-tablet">
+
+<!--    <a href="/products/ada_fang/">-->
+
+      <div class="card">
+
+        
+        <div class="card-image">
+          <figure class="image is-4by3">
+            <img src="/img/ada_fang.png" alt="<a href="#">Ada Fang</a>" />
+          </figure>
+        </div>
+        
+        <div class="card-content">
+
+          <p class="title is-5"><a href="#">Ada Fang</a></p>
+          <p class="subtitle is-6">PhD Student<br/>Harvard CCB<br/></p>
+<!--          <p class="subtitle is-5"></p>-->
+          <p class="title is-5 has-text-right"></p>
+
+        </div>
+      </div>
+
+<!--    </a>-->
+
+  </div>
+  
+  
+  
   <div class="column is-4-desktop is-6-tablet">
 
 <!--    <a href="/products/robert_calef/">-->
@@ -239,21 +268,50 @@
   
   <div class="column is-4-desktop is-6-tablet">
 
-<!--    <a href="/products/ada_fang/">-->
+<!--    <a href="/products/katya_ivshina/">-->
 
       <div class="card">
 
         
         <div class="card-image">
           <figure class="image is-4by3">
-            <img src="/img/ada_fang.png" alt="<a href="#">Ada Fang</a>" />
+            <img src="/img/katya_ivshina.png" alt="<a href="https://katyaivshina.com/">Katya Ivshina</a>" />
           </figure>
         </div>
         
         <div class="card-content">
 
-          <p class="title is-5"><a href="#">Ada Fang</a></p>
-          <p class="subtitle is-6">PhD Student<br/>Harvard CCB<br/></p>
+          <p class="title is-5"><a href="https://katyaivshina.com/">Katya Ivshina</a></p>
+          <p class="subtitle is-6">PhD Student<br/>Harvard Applied Mathematics<br/></p>
+<!--          <p class="subtitle is-5"></p>-->
+          <p class="title is-5 has-text-right"></p>
+
+        </div>
+      </div>
+
+<!--    </a>-->
+
+  </div>
+  
+  
+  
+  <div class="column is-4-desktop is-6-tablet">
+
+<!--    <a href="/products/michael_sun/">-->
+
+      <div class="card">
+
+        
+        <div class="card-image">
+          <figure class="image is-4by3">
+            <img src="/img/michael_sun.png" alt="<a href="https://michaelsuntech.wordpress.com/">Michael Sun</a>" />
+          </figure>
+        </div>
+        
+        <div class="card-content">
+
+          <p class="title is-5"><a href="https://michaelsuntech.wordpress.com/">Michael Sun</a></p>
+          <p class="subtitle is-6">PhD Student<br/>MIT EECS<br/></p>
 <!--          <p class="subtitle is-5"></p>-->
           <p class="title is-5 has-text-right"></p>
 
@@ -643,6 +701,35 @@
   
   
   
+  <div class="column is-4-desktop is-6-tablet">
+
+<!--    <a href="/products/aarthi_venkat/">-->
+
+      <div class="card">
+
+        
+        <div class="card-image">
+          <figure class="image is-4by3">
+            <img src="/img/aarthi_venkat.png" alt="<a href="https://scholar.google.com/citations?user=Z8c9_0QAAAAJ&hl=en">Aarthi Venkat</a>" />
+          </figure>
+        </div>
+        
+        <div class="card-content">
+
+          <p class="title is-5"><a href="https://scholar.google.com/citations?user=Z8c9_0QAAAAJ&hl=en">Aarthi Venkat</a></p>
+          <p class="subtitle is-6">Postdoctoral Fellow<br/>Eric and Wendy Schmidt Fellow<br/></p>
+<!--          <p class="subtitle is-5"></p>-->
+          <p class="title is-5 has-text-right"></p>
+
+        </div>
+      </div>
+
+<!--    </a>-->
+
+  </div>
+  
+  
+  
   <div class="column is-4-desktop is-6-tablet">
 
 <!--    <a href="/products/kexin_chen/">-->
@@ -674,20 +761,20 @@
   
   <div class="column is-4-desktop is-6-tablet">
 
-<!--    <a href="/products/pengwei_sui/">-->
+<!--    <a href="/products/michelle_dai/">-->
 
       <div class="card">
 
         
         <div class="card-image">
           <figure class="image is-4by3">
-            <img src="/img/pengwei_sui.png" alt="<a href="">Pengwei Sui</a>" />
+            <img src="/img/michelle_dai.png" alt="<a href="#">Michelle Dai</a>" />
           </figure>
         </div>
         
         <div class="card-content">
 
-          <p class="title is-5"><a href="">Pengwei Sui</a></p>
+          <p class="title is-5"><a href="#">Michelle Dai</a></p>
           <p class="subtitle is-6">Research Associate<br/><br/></p>
 <!--          <p class="subtitle is-5"></p>-->
           <p class="title is-5 has-text-right"></p>
@@ -703,20 +790,20 @@
   
   <div class="column is-4-desktop is-6-tablet">
 
-<!--    <a href="/products/michelle_dai/">-->
+<!--    <a href="/products/pengwei_sui/">-->
 
       <div class="card">
 
         
         <div class="card-image">
           <figure class="image is-4by3">
-            <img src="/img/michelle_dai.png" alt="<a href="#">Michelle Dai</a>" />
+            <img src="/img/pengwei_sui.png" alt="<a href="">Pengwei Sui</a>" />
           </figure>
         </div>
         
         <div class="card-content">
 
-          <p class="title is-5"><a href="#">Michelle Dai</a></p>
+          <p class="title is-5"><a href="">Pengwei Sui</a></p>
           <p class="subtitle is-6">Research Associate<br/><br/></p>
 <!--          <p class="subtitle is-5"></p>-->
           <p class="title is-5 has-text-right"></p>
@@ -790,20 +877,20 @@
   
   <div class="column is-4-desktop is-6-tablet">
 
-<!--    <a href="/products/richard_zhu/">-->
+<!--    <a href="/products/inaki_arango/">-->
 
       <div class="card">
 
         
         <div class="card-image">
           <figure class="image is-4by3">
-            <img src="/img/richard_zhu.png" alt="<a href="#">Richard Zhu</a>" />
+            <img src="/img/inaki_arango.png" alt="<a href="#">Iñaki Arango</a>" />
           </figure>
         </div>
         
         <div class="card-content">
 
-          <p class="title is-5"><a href="#">Richard Zhu</a></p>
+          <p class="title is-5"><a href="#">Iñaki Arango</a></p>
           <p class="subtitle is-6">Undergraduate Researcher<br/>Harvard<br/></p>
 <!--          <p class="subtitle is-5"></p>-->
           <p class="title is-5 has-text-right"></p>
@@ -819,20 +906,20 @@
   
   <div class="column is-4-desktop is-6-tablet">
 
-<!--    <a href="/products/ayush_noori/">-->
+<!--    <a href="/products/richard_zhu/">-->
 
       <div class="card">
 
         
         <div class="card-image">
           <figure class="image is-4by3">
-            <img src="/img/ayush_noori.png" alt="<a href="https://www.ayushnoori.com/">Ayush Noori</a>" />
+            <img src="/img/richard_zhu.png" alt="<a href="#">Richard Zhu</a>" />
           </figure>
         </div>
         
         <div class="card-content">
 
-          <p class="title is-5"><a href="https://www.ayushnoori.com/">Ayush Noori</a></p>
+          <p class="title is-5"><a href="#">Richard Zhu</a></p>
           <p class="subtitle is-6">Undergraduate Researcher<br/>Harvard<br/></p>
 <!--          <p class="subtitle is-5"></p>-->
           <p class="title is-5 has-text-right"></p>
@@ -848,20 +935,20 @@
   
   <div class="column is-4-desktop is-6-tablet">
 
-<!--    <a href="/products/inaki_arango/">-->
+<!--    <a href="/products/ayush_noori/">-->
 
       <div class="card">
 
         
         <div class="card-image">
           <figure class="image is-4by3">
-            <img src="/img/inaki_arango.png" alt="<a href="#">Iñaki Arango</a>" />
+            <img src="/img/ayush_noori.png" alt="<a href="https://www.ayushnoori.com/">Ayush Noori</a>" />
           </figure>
         </div>
         
         <div class="card-content">
 
-          <p class="title is-5"><a href="#">Iñaki Arango</a></p>
+          <p class="title is-5"><a href="https://www.ayushnoori.com/">Ayush Noori</a></p>
           <p class="subtitle is-6">Undergraduate Researcher<br/>Harvard<br/></p>
 <!--          <p class="subtitle is-5"></p>-->
           <p class="title is-5 has-text-right"></p>
@@ -936,6 +1023,12 @@ <h2 id="Associate members">Associate members</h2>
   
   
   
+  
+  
+  
+  
+  
+  
   
   
   
@@ -1014,6 +1107,90 @@ <h2 id="Alumni">Lab alumni</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -1102,8 +1279,8 @@ <h2 id="Alumni">Lab alumni</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -1490,90 +1667,6 @@ <h2 id="Alumni">Lab alumni</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/postdoc-ML/index.html b/postdoc-ML/index.html
index 9855a701..df1f6aea 100644
--- a/postdoc-ML/index.html
+++ b/postdoc-ML/index.html
@@ -191,6 +191,90 @@ <h2 id="advisor">Advisor</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -279,8 +363,8 @@ <h2 id="advisor">Advisor</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -667,90 +751,6 @@ <h2 id="advisor">Advisor</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/postdoc-TDC/index.html b/postdoc-TDC/index.html
index 24028880..fcebe73f 100644
--- a/postdoc-TDC/index.html
+++ b/postdoc-TDC/index.html
@@ -203,6 +203,90 @@ <h2 id="advisor">Advisor</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -291,8 +375,8 @@ <h2 id="advisor">Advisor</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -679,90 +763,6 @@ <h2 id="advisor">Advisor</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/postdoc-biomedicalAI-MGB/index.html b/postdoc-biomedicalAI-MGB/index.html
index 1816abb4..7495b91d 100644
--- a/postdoc-biomedicalAI-MGB/index.html
+++ b/postdoc-biomedicalAI-MGB/index.html
@@ -180,6 +180,90 @@ <h2 id="application-process">Application process</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -268,8 +352,8 @@ <h2 id="application-process">Application process</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -656,90 +740,6 @@ <h2 id="application-process">Application process</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/postdoc-cancerTxAI/index.html b/postdoc-cancerTxAI/index.html
index 95eea48c..c10cc582 100644
--- a/postdoc-cancerTxAI/index.html
+++ b/postdoc-cancerTxAI/index.html
@@ -189,6 +189,90 @@ <h2 id="faculty-and-mentors">Faculty and mentors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -277,8 +361,8 @@ <h2 id="faculty-and-mentors">Faculty and mentors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -665,90 +749,6 @@ <h2 id="faculty-and-mentors">Faculty and mentors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/postdoc-medicalAI/index.html b/postdoc-medicalAI/index.html
index 5e5b3c78..3617bf32 100644
--- a/postdoc-medicalAI/index.html
+++ b/postdoc-medicalAI/index.html
@@ -196,6 +196,90 @@ <h2 id="advisor">Advisor</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -284,8 +368,8 @@ <h2 id="advisor">Advisor</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -672,90 +756,6 @@ <h2 id="advisor">Advisor</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/products/jason_poulos/index.html b/products/aarthi_venkat/index.html
similarity index 80%
rename from products/jason_poulos/index.html
rename to products/aarthi_venkat/index.html
index 2d9421e0..f9c81612 100644
--- a/products/jason_poulos/index.html
+++ b/products/aarthi_venkat/index.html
@@ -4,33 +4,33 @@
   <head>
     <meta charset="utf-8">
     <meta name="viewport" content="width=device-width, initial-scale=1">
-    <title><a href="https://jasonvpoulos.com/">Jason Poulos</a> - Zitnik Lab</title>
+    <title><a href="https://scholar.google.com/citations?user=Z8c9_0QAAAAJ&hl=en">Aarthi Venkat</a> - Zitnik Lab</title>
     <link rel="stylesheet" href="/assets/css/app.css">
     <link rel="shortcut icon" type="image/png"
            href="/favicon.png" 
     />
     <script defer src="https://use.fontawesome.com/releases/v5.3.1/js/all.js"></script>
     <!-- Begin Jekyll SEO tag v2.6.1 -->
-<title>Jason Poulos | Zitnik Lab</title>
+<title>Aarthi Venkat | Zitnik Lab</title>
 <meta name="generator" content="Jekyll v3.8.6" />
-<meta property="og:title" content="Jason Poulos" />
+<meta property="og:title" content="Aarthi Venkat" />
 <meta name="author" content="Marinka Zitnik" />
 <meta property="og:locale" content="en_US" />
 <meta name="description" content="Artificial Intelligence (AI), Medicine, Science, and Drug Discovery" />
 <meta property="og:description" content="Artificial Intelligence (AI), Medicine, Science, and Drug Discovery" />
-<link rel="canonical" href="https://zitniklab.hms.harvard.edu/products/jason_poulos/" />
-<meta property="og:url" content="https://zitniklab.hms.harvard.edu/products/jason_poulos/" />
+<link rel="canonical" href="https://zitniklab.hms.harvard.edu/products/aarthi_venkat/" />
+<meta property="og:url" content="https://zitniklab.hms.harvard.edu/products/aarthi_venkat/" />
 <meta property="og:site_name" content="Zitnik Lab" />
-<meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/jason_poulos.png" />
+<meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/aarthi_venkat.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-11-17T13:35:16-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
-<meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/jason_poulos.png" />
-<meta property="twitter:title" content="Jason Poulos" />
+<meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/aarthi_venkat.png" />
+<meta property="twitter:title" content="Aarthi Venkat" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/jason_poulos.png","url":"https://zitniklab.hms.harvard.edu/products/jason_poulos/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/jason_poulos/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Jason Poulos","dateModified":"2024-11-17T13:35:16-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-11-17T13:35:16-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/aarthi_venkat.png","url":"https://zitniklab.hms.harvard.edu/products/aarthi_venkat/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/aarthi_venkat/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Aarthi Venkat","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
@@ -125,8 +125,8 @@
         <section class="hero  is-medium  is-bold is-primary"  style="background: url('/hero.jpg') no-repeat center center; background-size: cover;" >
     <div class="hero-body">
         <div class="container">
-            <p class="title is-2"><a href="https://jasonvpoulos.com/">Jason Poulos</a></p>
-            <p class="subtitle is-3">Postdoctoral Fellow<br/>Brigham and Women's Hospital<br/></p>
+            <p class="title is-2"><a href="https://scholar.google.com/citations?user=Z8c9_0QAAAAJ&hl=en">Aarthi Venkat</a></p>
+            <p class="subtitle is-3">Postdoctoral Fellow<br/>Eric and Wendy Schmidt Fellow<br/></p>
             
         </div>
     </div>
@@ -146,13 +146,13 @@
 
     <div class="column is-6">
         <figure class="image is-4by3">
-            <img src="/img/jason_poulos.png" />
+            <img src="/img/aarthi_venkat.png" />
         </figure>
     </div>
 
     <div class="column is-6">
-        <p class="title is-3"><a href="https://jasonvpoulos.com/">Jason Poulos</a></p>
-        <p class="subtitle is-3">Postdoctoral Fellow<br/>Brigham and Women's Hospital<br/></p>
+        <p class="title is-3"><a href="https://scholar.google.com/citations?user=Z8c9_0QAAAAJ&hl=en">Aarthi Venkat</a></p>
+        <p class="subtitle is-3">Postdoctoral Fellow<br/>Eric and Wendy Schmidt Fellow<br/></p>
         <p class="title is-4 has-text-right"></p>
         
         
diff --git a/products/ada_fang/index.html b/products/ada_fang/index.html
index db3a875c..a8489ec4 100644
--- a/products/ada_fang/index.html
+++ b/products/ada_fang/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/ada_fang.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/ada_fang.png" />
 <meta property="twitter:title" content="Ada Fang" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/ada_fang.png","url":"https://zitniklab.hms.harvard.edu/products/ada_fang/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/ada_fang/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Ada Fang","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/ada_fang.png","url":"https://zitniklab.hms.harvard.edu/products/ada_fang/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/ada_fang/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Ada Fang","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/alejandro_velez_arce/index.html b/products/alejandro_velez_arce/index.html
index c7bbb941..0066612b 100644
--- a/products/alejandro_velez_arce/index.html
+++ b/products/alejandro_velez_arce/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/alex_verce.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/alex_verce.png" />
 <meta property="twitter:title" content="Alejandro Velez Arce" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/alex_verce.png","url":"https://zitniklab.hms.harvard.edu/products/alejandro_velez_arce/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/alejandro_velez_arce/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Alejandro Velez Arce","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/alex_verce.png","url":"https://zitniklab.hms.harvard.edu/products/alejandro_velez_arce/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/alejandro_velez_arce/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Alejandro Velez Arce","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/andrew_shen/index.html b/products/andrew_shen/index.html
index 96d4ce20..1249a17b 100644
--- a/products/andrew_shen/index.html
+++ b/products/andrew_shen/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/andrew_shen.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/andrew_shen.png" />
 <meta property="twitter:title" content="Andrew Shen" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/andrew_shen.png","url":"https://zitniklab.hms.harvard.edu/products/andrew_shen/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/andrew_shen/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Andrew Shen","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/andrew_shen.png","url":"https://zitniklab.hms.harvard.edu/products/andrew_shen/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/andrew_shen/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Andrew Shen","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/ayush_noori/index.html b/products/ayush_noori/index.html
index a0ce6260..3f113502 100644
--- a/products/ayush_noori/index.html
+++ b/products/ayush_noori/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/ayush_noori.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/ayush_noori.png" />
 <meta property="twitter:title" content="Ayush Noori" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/ayush_noori.png","url":"https://zitniklab.hms.harvard.edu/products/ayush_noori/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/ayush_noori/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Ayush Noori","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/ayush_noori.png","url":"https://zitniklab.hms.harvard.edu/products/ayush_noori/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/ayush_noori/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Ayush Noori","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/grey_kuling/index.html b/products/grey_kuling/index.html
index fbc50496..e3f2ea2d 100644
--- a/products/grey_kuling/index.html
+++ b/products/grey_kuling/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/grey_kuling.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/grey_kuling.png" />
 <meta property="twitter:title" content="Grey Kuling" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/grey_kuling.png","url":"https://zitniklab.hms.harvard.edu/products/grey_kuling/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/grey_kuling/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Grey Kuling","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/grey_kuling.png","url":"https://zitniklab.hms.harvard.edu/products/grey_kuling/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/grey_kuling/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Grey Kuling","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/inaki_arango/index.html b/products/inaki_arango/index.html
index 492b6897..d02152bf 100644
--- a/products/inaki_arango/index.html
+++ b/products/inaki_arango/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/inaki_arango.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/inaki_arango.png" />
 <meta property="twitter:title" content="Iñaki Arango" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/inaki_arango.png","url":"https://zitniklab.hms.harvard.edu/products/inaki_arango/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/inaki_arango/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Iñaki Arango","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/inaki_arango.png","url":"https://zitniklab.hms.harvard.edu/products/inaki_arango/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/inaki_arango/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Iñaki Arango","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/intae_moon/index.html b/products/intae_moon/index.html
index 07a97f9d..e4e98a8a 100644
--- a/products/intae_moon/index.html
+++ b/products/intae_moon/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/intae_moon.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/intae_moon.png" />
 <meta property="twitter:title" content="Intae Moon" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/intae_moon.png","url":"https://zitniklab.hms.harvard.edu/products/intae_moon/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/intae_moon/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Intae Moon","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/intae_moon.png","url":"https://zitniklab.hms.harvard.edu/products/intae_moon/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/intae_moon/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Intae Moon","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/katya_ivshina/index.html b/products/katya_ivshina/index.html
new file mode 100644
index 00000000..b292de40
--- /dev/null
+++ b/products/katya_ivshina/index.html
@@ -0,0 +1,195 @@
+
+<!DOCTYPE html>
+<html>
+  <head>
+    <meta charset="utf-8">
+    <meta name="viewport" content="width=device-width, initial-scale=1">
+    <title><a href="https://katyaivshina.com/">Katya Ivshina</a> - Zitnik Lab</title>
+    <link rel="stylesheet" href="/assets/css/app.css">
+    <link rel="shortcut icon" type="image/png"
+           href="/favicon.png" 
+    />
+    <script defer src="https://use.fontawesome.com/releases/v5.3.1/js/all.js"></script>
+    <!-- Begin Jekyll SEO tag v2.6.1 -->
+<title>Katya Ivshina | Zitnik Lab</title>
+<meta name="generator" content="Jekyll v3.8.6" />
+<meta property="og:title" content="Katya Ivshina" />
+<meta name="author" content="Marinka Zitnik" />
+<meta property="og:locale" content="en_US" />
+<meta name="description" content="Artificial Intelligence (AI), Biomedical Machine Learning, Science, and Drug Discovery" />
+<meta property="og:description" content="Artificial Intelligence (AI), Biomedical Machine Learning, Science, and Drug Discovery" />
+<link rel="canonical" href="https://zitniklab.hms.harvard.edu/products/katya_ivshina/" />
+<meta property="og:url" content="https://zitniklab.hms.harvard.edu/products/katya_ivshina/" />
+<meta property="og:site_name" content="Zitnik Lab" />
+<meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/katya_ivshina.png" />
+<meta property="og:type" content="article" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
+<meta name="twitter:card" content="summary" />
+<meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/katya_ivshina.png" />
+<meta property="twitter:title" content="Katya Ivshina" />
+<meta name="twitter:site" content="@marinkazitnik" />
+<meta name="twitter:creator" content="@Marinka Zitnik" />
+<script type="application/ld+json">
+{"image":"https://zitniklab.hms.harvard.edu/img/katya_ivshina.png","url":"https://zitniklab.hms.harvard.edu/products/katya_ivshina/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/katya_ivshina/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Katya Ivshina","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Biomedical Machine Learning, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+<!-- End Jekyll SEO tag -->
+<script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
+<script>
+  window['ga-disable-UA-162129505-1'] = window.doNotTrack === "1" || navigator.doNotTrack === "1" || navigator.doNotTrack === "yes" || navigator.msDoNotTrack === "1";
+  window.dataLayer = window.dataLayer || [];
+  function gtag(){dataLayer.push(arguments);}
+  gtag('js', new Date());
+  gtag('config', 'UA-162129505-1');
+</script><!-- head scripts --></head>
+
+  <body>
+    
+<nav class="navbar is-primary" >
+    <div class="container">
+        <div class="navbar-brand">
+            <a href="/" class="navbar-item"><b>
+                Zitnik Lab
+            </b></a>
+            <a role="button" class="navbar-burger burger" aria-label="menu" aria-expanded="false" data-target="navMenu">
+                <span aria-hidden="true"></span>
+                <span aria-hidden="true"></span>
+                <span aria-hidden="true"></span>
+            </a>
+        </div>
+        <div class="navbar-menu" id="navMenu">
+            <div class="navbar-start">
+<!--                <a href="/" class="navbar-item "><b>Home</b></a>-->
+                
+                
+                    
+                    <div class="navbar-item has-dropdown is-hoverable">
+                        <a href="/#" class="navbar-link "><b>About</b></a>
+                        <div class="navbar-dropdown">
+                            
+                            <a href="/bio/" class="navbar-item "><b>Bio</b></a>
+                            
+                            <a href="/contact/" class="navbar-item "><b>Contact</b></a>
+                            
+                            <a href="/talks/" class="navbar-item "><b>Recent Talks</b></a>
+                            
+                        </div>
+                    </div>
+                    
+                
+                    
+                <a href="/research/" class="navbar-item "><b>Research</b></a>
+                    
+                
+                    
+                <a href="/publications/" class="navbar-item "><b>Publications</b></a>
+                    
+                
+                    
+                <a href="/people/" class="navbar-item "><b>Members</b></a>
+                    
+                
+                    
+                <a href="/meetings/" class="navbar-item "><b>Education</b></a>
+                    
+                
+                    
+                <a href="/DMAI/" class="navbar-item "><b>DMAI</b></a>
+                    
+                
+                    
+                <a href="/data/" class="navbar-item "><b>Datasets</b></a>
+                    
+                
+                    
+                <a href="/software/" class="navbar-item "><b>AI Models</b></a>
+                    
+                
+                    
+                <a href="https://zitniklab.hms.harvard.edu/TDC/" class="navbar-item "><b>TDC</b></a>
+                    
+                
+                    
+                <a href="/news/" class="navbar-item "><b>News</b></a>
+                    
+                
+                    
+                <a href="/jobs/" class="navbar-item "><b>Join Us</b></a>
+                    
+                
+                
+            </div>
+        </div>
+    </div>
+</nav>
+
+    
+        <section class="hero  is-medium  is-bold is-primary"  style="background: url('/hero.jpg') no-repeat center center; background-size: cover;" >
+    <div class="hero-body">
+        <div class="container">
+            <p class="title is-2"><a href="https://katyaivshina.com/">Katya Ivshina</a></p>
+            <p class="subtitle is-3">PhD Student<br/>Harvard Applied Mathematics<br/></p>
+            
+        </div>
+    </div>
+</section>
+    
+    
+
+
+    <section class="section">
+        <div class="container">
+            <div class="columns">
+                
+                <div class="column is-12">
+                    
+                    
+                    <div class="columns is-multiline">
+
+    <div class="column is-6">
+        <figure class="image is-4by3">
+            <img src="/img/katya_ivshina.png" />
+        </figure>
+    </div>
+
+    <div class="column is-6">
+        <p class="title is-3"><a href="https://katyaivshina.com/">Katya Ivshina</a></p>
+        <p class="subtitle is-3">PhD Student<br/>Harvard Applied Mathematics<br/></p>
+        <p class="title is-4 has-text-right"></p>
+        
+        
+        
+        
+        
+    </div>
+
+    <div class="column is-12">
+        <p class="title is-4">Description</p>
+        <div class="content">
+
+
+            
+
+        </div>
+    </div>
+
+    
+
+</div>
+
+
+                </div>
+                
+            </div>
+        </div>
+    </section>
+    
+    <script src="/assets/js/app.js" type="text/javascript"></script><!-- footer scripts -->
+<div style="background-color:#A41034">
+        <div class="content is-normal has-text-centered">
+            <p style="color:white;padding-top:20px;padding-bottom:20px;"><a href="https://scholar.harvard.edu/marinka" style="color:white"><b>Zitnik Lab</b></a>
+                &nbsp;&middot;&nbsp; <a href="#" style="color:white"><b>Artificial Intelligence in Medicine and Science</b></a>
+                &nbsp;&middot;&nbsp; <a href="https://harvard.edu" style="color:white"><b>Harvard</b></a>
+                &nbsp;&middot;&nbsp; <a href="https://dbmi.hms.harvard.edu/" style="color:white"><b>Department of Biomedical Informatics</b></a></p>
+        </div>
+</div></body>
+</html>
+
diff --git a/products/kevin_li/index.html b/products/kevin_li/index.html
index 70962747..8330787f 100644
--- a/products/kevin_li/index.html
+++ b/products/kevin_li/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/kevin_li.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/kevin_li.png" />
 <meta property="twitter:title" content="Kevin Li" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/kevin_li.png","url":"https://zitniklab.hms.harvard.edu/products/kevin_li/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/kevin_li/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Kevin Li","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/kevin_li.png","url":"https://zitniklab.hms.harvard.edu/products/kevin_li/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/kevin_li/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Kevin Li","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/kexin_chen/index.html b/products/kexin_chen/index.html
index c2e8e7a0..7e9f9ea7 100644
--- a/products/kexin_chen/index.html
+++ b/products/kexin_chen/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/kexin_chen.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/kexin_chen.png" />
 <meta property="twitter:title" content="Kexin Chen" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/kexin_chen.png","url":"https://zitniklab.hms.harvard.edu/products/kexin_chen/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/kexin_chen/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Kexin Chen","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/kexin_chen.png","url":"https://zitniklab.hms.harvard.edu/products/kexin_chen/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/kexin_chen/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Kexin Chen","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/marinka_zitnik/index.html b/products/marinka_zitnik/index.html
index c77d9fd9..f3e98051 100644
--- a/products/marinka_zitnik/index.html
+++ b/products/marinka_zitnik/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/marinka_zitnik.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/marinka_zitnik.png" />
 <meta property="twitter:title" content="Marinka Zitnik" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/marinka_zitnik.png","url":"https://zitniklab.hms.harvard.edu/products/marinka_zitnik/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/marinka_zitnik/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Marinka Zitnik","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/marinka_zitnik.png","url":"https://zitniklab.hms.harvard.edu/products/marinka_zitnik/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/marinka_zitnik/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Marinka Zitnik","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/michael_sun/index.html b/products/michael_sun/index.html
new file mode 100644
index 00000000..89597216
--- /dev/null
+++ b/products/michael_sun/index.html
@@ -0,0 +1,195 @@
+
+<!DOCTYPE html>
+<html>
+  <head>
+    <meta charset="utf-8">
+    <meta name="viewport" content="width=device-width, initial-scale=1">
+    <title><a href="https://michaelsuntech.wordpress.com/">Michael Sun</a> - Zitnik Lab</title>
+    <link rel="stylesheet" href="/assets/css/app.css">
+    <link rel="shortcut icon" type="image/png"
+           href="/favicon.png" 
+    />
+    <script defer src="https://use.fontawesome.com/releases/v5.3.1/js/all.js"></script>
+    <!-- Begin Jekyll SEO tag v2.6.1 -->
+<title>Michael Sun | Zitnik Lab</title>
+<meta name="generator" content="Jekyll v3.8.6" />
+<meta property="og:title" content="Michael Sun" />
+<meta name="author" content="Marinka Zitnik" />
+<meta property="og:locale" content="en_US" />
+<meta name="description" content="Artificial Intelligence (AI), Biomedical Machine Learning, Science, and Drug Discovery" />
+<meta property="og:description" content="Artificial Intelligence (AI), Biomedical Machine Learning, Science, and Drug Discovery" />
+<link rel="canonical" href="https://zitniklab.hms.harvard.edu/products/michael_sun/" />
+<meta property="og:url" content="https://zitniklab.hms.harvard.edu/products/michael_sun/" />
+<meta property="og:site_name" content="Zitnik Lab" />
+<meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/michael_sun.png" />
+<meta property="og:type" content="article" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
+<meta name="twitter:card" content="summary" />
+<meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/michael_sun.png" />
+<meta property="twitter:title" content="Michael Sun" />
+<meta name="twitter:site" content="@marinkazitnik" />
+<meta name="twitter:creator" content="@Marinka Zitnik" />
+<script type="application/ld+json">
+{"image":"https://zitniklab.hms.harvard.edu/img/michael_sun.png","url":"https://zitniklab.hms.harvard.edu/products/michael_sun/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/michael_sun/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Michael Sun","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Biomedical Machine Learning, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+<!-- End Jekyll SEO tag -->
+<script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
+<script>
+  window['ga-disable-UA-162129505-1'] = window.doNotTrack === "1" || navigator.doNotTrack === "1" || navigator.doNotTrack === "yes" || navigator.msDoNotTrack === "1";
+  window.dataLayer = window.dataLayer || [];
+  function gtag(){dataLayer.push(arguments);}
+  gtag('js', new Date());
+  gtag('config', 'UA-162129505-1');
+</script><!-- head scripts --></head>
+
+  <body>
+    
+<nav class="navbar is-primary" >
+    <div class="container">
+        <div class="navbar-brand">
+            <a href="/" class="navbar-item"><b>
+                Zitnik Lab
+            </b></a>
+            <a role="button" class="navbar-burger burger" aria-label="menu" aria-expanded="false" data-target="navMenu">
+                <span aria-hidden="true"></span>
+                <span aria-hidden="true"></span>
+                <span aria-hidden="true"></span>
+            </a>
+        </div>
+        <div class="navbar-menu" id="navMenu">
+            <div class="navbar-start">
+<!--                <a href="/" class="navbar-item "><b>Home</b></a>-->
+                
+                
+                    
+                    <div class="navbar-item has-dropdown is-hoverable">
+                        <a href="/#" class="navbar-link "><b>About</b></a>
+                        <div class="navbar-dropdown">
+                            
+                            <a href="/bio/" class="navbar-item "><b>Bio</b></a>
+                            
+                            <a href="/contact/" class="navbar-item "><b>Contact</b></a>
+                            
+                            <a href="/talks/" class="navbar-item "><b>Recent Talks</b></a>
+                            
+                        </div>
+                    </div>
+                    
+                
+                    
+                <a href="/research/" class="navbar-item "><b>Research</b></a>
+                    
+                
+                    
+                <a href="/publications/" class="navbar-item "><b>Publications</b></a>
+                    
+                
+                    
+                <a href="/people/" class="navbar-item "><b>Members</b></a>
+                    
+                
+                    
+                <a href="/meetings/" class="navbar-item "><b>Education</b></a>
+                    
+                
+                    
+                <a href="/DMAI/" class="navbar-item "><b>DMAI</b></a>
+                    
+                
+                    
+                <a href="/data/" class="navbar-item "><b>Datasets</b></a>
+                    
+                
+                    
+                <a href="/software/" class="navbar-item "><b>AI Models</b></a>
+                    
+                
+                    
+                <a href="https://zitniklab.hms.harvard.edu/TDC/" class="navbar-item "><b>TDC</b></a>
+                    
+                
+                    
+                <a href="/news/" class="navbar-item "><b>News</b></a>
+                    
+                
+                    
+                <a href="/jobs/" class="navbar-item "><b>Join Us</b></a>
+                    
+                
+                
+            </div>
+        </div>
+    </div>
+</nav>
+
+    
+        <section class="hero  is-medium  is-bold is-primary"  style="background: url('/hero.jpg') no-repeat center center; background-size: cover;" >
+    <div class="hero-body">
+        <div class="container">
+            <p class="title is-2"><a href="https://michaelsuntech.wordpress.com/">Michael Sun</a></p>
+            <p class="subtitle is-3">PhD Student<br/>MIT EECS<br/></p>
+            
+        </div>
+    </div>
+</section>
+    
+    
+
+
+    <section class="section">
+        <div class="container">
+            <div class="columns">
+                
+                <div class="column is-12">
+                    
+                    
+                    <div class="columns is-multiline">
+
+    <div class="column is-6">
+        <figure class="image is-4by3">
+            <img src="/img/michael_sun.png" />
+        </figure>
+    </div>
+
+    <div class="column is-6">
+        <p class="title is-3"><a href="https://michaelsuntech.wordpress.com/">Michael Sun</a></p>
+        <p class="subtitle is-3">PhD Student<br/>MIT EECS<br/></p>
+        <p class="title is-4 has-text-right"></p>
+        
+        
+        
+        
+        
+    </div>
+
+    <div class="column is-12">
+        <p class="title is-4">Description</p>
+        <div class="content">
+
+
+            
+
+        </div>
+    </div>
+
+    
+
+</div>
+
+
+                </div>
+                
+            </div>
+        </div>
+    </section>
+    
+    <script src="/assets/js/app.js" type="text/javascript"></script><!-- footer scripts -->
+<div style="background-color:#A41034">
+        <div class="content is-normal has-text-centered">
+            <p style="color:white;padding-top:20px;padding-bottom:20px;"><a href="https://scholar.harvard.edu/marinka" style="color:white"><b>Zitnik Lab</b></a>
+                &nbsp;&middot;&nbsp; <a href="#" style="color:white"><b>Artificial Intelligence in Medicine and Science</b></a>
+                &nbsp;&middot;&nbsp; <a href="https://harvard.edu" style="color:white"><b>Harvard</b></a>
+                &nbsp;&middot;&nbsp; <a href="https://dbmi.hms.harvard.edu/" style="color:white"><b>Department of Biomedical Informatics</b></a></p>
+        </div>
+</div></body>
+</html>
+
diff --git a/products/michelle_dai/index.html b/products/michelle_dai/index.html
index 12b33cd6..fcc2153b 100644
--- a/products/michelle_dai/index.html
+++ b/products/michelle_dai/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/michelle_dai.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/michelle_dai.png" />
 <meta property="twitter:title" content="Michelle Dai" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/michelle_dai.png","url":"https://zitniklab.hms.harvard.edu/products/michelle_dai/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/michelle_dai/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Michelle Dai","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/michelle_dai.png","url":"https://zitniklab.hms.harvard.edu/products/michelle_dai/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/michelle_dai/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Michelle Dai","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/michelle_li/index.html b/products/michelle_li/index.html
index 7d678be6..b19d0499 100644
--- a/products/michelle_li/index.html
+++ b/products/michelle_li/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/michelle_li.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/michelle_li.png" />
 <meta property="twitter:title" content="Michelle M. Li" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/michelle_li.png","url":"https://zitniklab.hms.harvard.edu/products/michelle_li/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/michelle_li/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Michelle M. Li","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/michelle_li.png","url":"https://zitniklab.hms.harvard.edu/products/michelle_li/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/michelle_li/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Michelle M. Li","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/pengwei_sui/index.html b/products/pengwei_sui/index.html
index ad8aa08c..10388a79 100644
--- a/products/pengwei_sui/index.html
+++ b/products/pengwei_sui/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/pengwei_sui.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/pengwei_sui.png" />
 <meta property="twitter:title" content="Pengwei Sui" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/pengwei_sui.png","url":"https://zitniklab.hms.harvard.edu/products/pengwei_sui/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/pengwei_sui/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Pengwei Sui","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/pengwei_sui.png","url":"https://zitniklab.hms.harvard.edu/products/pengwei_sui/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/pengwei_sui/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Pengwei Sui","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/richard_zhu/index.html b/products/richard_zhu/index.html
index b732840e..d3f18c5b 100644
--- a/products/richard_zhu/index.html
+++ b/products/richard_zhu/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/richard_zhu.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/richard_zhu.png" />
 <meta property="twitter:title" content="Richard Zhu" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/richard_zhu.png","url":"https://zitniklab.hms.harvard.edu/products/richard_zhu/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/richard_zhu/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Richard Zhu","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/richard_zhu.png","url":"https://zitniklab.hms.harvard.edu/products/richard_zhu/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/richard_zhu/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Richard Zhu","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/robert_calef/index.html b/products/robert_calef/index.html
index 72b11783..2553954f 100644
--- a/products/robert_calef/index.html
+++ b/products/robert_calef/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/robert_calef.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/robert_calef.png" />
 <meta property="twitter:title" content="Robert Calef" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/robert_calef.png","url":"https://zitniklab.hms.harvard.edu/products/robert_calef/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/robert_calef/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Robert Calef","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/robert_calef.png","url":"https://zitniklab.hms.harvard.edu/products/robert_calef/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/robert_calef/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Robert Calef","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/ruth_johnson/index.html b/products/ruth_johnson/index.html
index caf1b349..dec99d13 100644
--- a/products/ruth_johnson/index.html
+++ b/products/ruth_johnson/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/ruth_johnson.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/ruth_johnson.png" />
 <meta property="twitter:title" content="Ruth Johnson" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/ruth_johnson.png","url":"https://zitniklab.hms.harvard.edu/products/ruth_johnson/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/ruth_johnson/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Ruth Johnson","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/ruth_johnson.png","url":"https://zitniklab.hms.harvard.edu/products/ruth_johnson/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/ruth_johnson/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Ruth Johnson","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/shanghua_gao/index.html b/products/shanghua_gao/index.html
index d695ce31..100c5e54 100644
--- a/products/shanghua_gao/index.html
+++ b/products/shanghua_gao/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/shanghua_gao.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/shanghua_gao.png" />
 <meta property="twitter:title" content="Shanghua Gao" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/shanghua_gao.png","url":"https://zitniklab.hms.harvard.edu/products/shanghua_gao/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/shanghua_gao/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Shanghua Gao","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/shanghua_gao.png","url":"https://zitniklab.hms.harvard.edu/products/shanghua_gao/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/shanghua_gao/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Shanghua Gao","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/valentina_giunchiglia/index.html b/products/valentina_giunchiglia/index.html
index a27afebb..53ce99c6 100644
--- a/products/valentina_giunchiglia/index.html
+++ b/products/valentina_giunchiglia/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/valentina_giunchiglia.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/valentina_giunchiglia.png" />
 <meta property="twitter:title" content="Valentina Giunchiglia" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/valentina_giunchiglia.png","url":"https://zitniklab.hms.harvard.edu/products/valentina_giunchiglia/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/valentina_giunchiglia/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Valentina Giunchiglia","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/valentina_giunchiglia.png","url":"https://zitniklab.hms.harvard.edu/products/valentina_giunchiglia/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/valentina_giunchiglia/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Valentina Giunchiglia","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/wanxiang_shen/index.html b/products/wanxiang_shen/index.html
index 0aa04dc2..3071a757 100644
--- a/products/wanxiang_shen/index.html
+++ b/products/wanxiang_shen/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/wanxiang_shen.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/wanxiang_shen.png" />
 <meta property="twitter:title" content="Wanxiang Shen" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/wanxiang_shen.png","url":"https://zitniklab.hms.harvard.edu/products/wanxiang_shen/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/wanxiang_shen/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Wanxiang Shen","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/wanxiang_shen.png","url":"https://zitniklab.hms.harvard.edu/products/wanxiang_shen/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/wanxiang_shen/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Wanxiang Shen","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/xiang_lin/index.html b/products/xiang_lin/index.html
index 415a6bad..7355507c 100644
--- a/products/xiang_lin/index.html
+++ b/products/xiang_lin/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/xiang_lin.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/xiang_lin.png" />
 <meta property="twitter:title" content="Xiang Lin" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/xiang_lin.png","url":"https://zitniklab.hms.harvard.edu/products/xiang_lin/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/xiang_lin/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Xiang Lin","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/xiang_lin.png","url":"https://zitniklab.hms.harvard.edu/products/xiang_lin/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/xiang_lin/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Xiang Lin","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/xiaorui_su/index.html b/products/xiaorui_su/index.html
index 2f5b348d..6480f305 100644
--- a/products/xiaorui_su/index.html
+++ b/products/xiaorui_su/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/xiaorui_su.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/xiaorui_su.png" />
 <meta property="twitter:title" content="Xiaorui Su" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/xiaorui_su.png","url":"https://zitniklab.hms.harvard.edu/products/xiaorui_su/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/xiaorui_su/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Xiaorui Su","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/xiaorui_su.png","url":"https://zitniklab.hms.harvard.edu/products/xiaorui_su/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/xiaorui_su/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Xiaorui Su","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/yasha_ektefaie/index.html b/products/yasha_ektefaie/index.html
index c98cd4a2..b91d4822 100644
--- a/products/yasha_ektefaie/index.html
+++ b/products/yasha_ektefaie/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/yasha_ektefaie.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/yasha_ektefaie.png" />
 <meta property="twitter:title" content="Yasha Ektefaie" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/yasha_ektefaie.png","url":"https://zitniklab.hms.harvard.edu/products/yasha_ektefaie/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/yasha_ektefaie/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Yasha Ektefaie","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Biomedical Machine Learning, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/yasha_ektefaie.png","url":"https://zitniklab.hms.harvard.edu/products/yasha_ektefaie/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/yasha_ektefaie/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Yasha Ektefaie","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Biomedical Machine Learning, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/yepeng_huang/index.html b/products/yepeng_huang/index.html
index 97601f66..d04bb6a6 100644
--- a/products/yepeng_huang/index.html
+++ b/products/yepeng_huang/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/yepeng_huang.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/yepeng_huang.png" />
 <meta property="twitter:title" content="Yepeng Huang" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/yepeng_huang.png","url":"https://zitniklab.hms.harvard.edu/products/yepeng_huang/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/yepeng_huang/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Yepeng Huang","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/yepeng_huang.png","url":"https://zitniklab.hms.harvard.edu/products/yepeng_huang/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/yepeng_huang/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Yepeng Huang","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/ying_jin/index.html b/products/ying_jin/index.html
index 092197f1..830f0f59 100644
--- a/products/ying_jin/index.html
+++ b/products/ying_jin/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/ying_jin.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/ying_jin.png" />
 <meta property="twitter:title" content="Ying Jin" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/ying_jin.png","url":"https://zitniklab.hms.harvard.edu/products/ying_jin/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/ying_jin/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Ying Jin","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/ying_jin.png","url":"https://zitniklab.hms.harvard.edu/products/ying_jin/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/ying_jin/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Ying Jin","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/products/zhenglun_kong/index.html b/products/zhenglun_kong/index.html
index 27d803ad..35f2c326 100644
--- a/products/zhenglun_kong/index.html
+++ b/products/zhenglun_kong/index.html
@@ -23,14 +23,14 @@
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta property="og:image" content="https://zitniklab.hms.harvard.edu/img/zhenglun_kong.png" />
 <meta property="og:type" content="article" />
-<meta property="article:published_time" content="2024-12-02T21:40:57-05:00" />
+<meta property="article:published_time" content="2024-12-16T01:28:04-05:00" />
 <meta name="twitter:card" content="summary" />
 <meta property="twitter:image" content="https://zitniklab.hms.harvard.edu/img/zhenglun_kong.png" />
 <meta property="twitter:title" content="Zhenglun Kong" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"image":"https://zitniklab.hms.harvard.edu/img/zhenglun_kong.png","url":"https://zitniklab.hms.harvard.edu/products/zhenglun_kong/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/zhenglun_kong/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Zhenglun Kong","dateModified":"2024-12-02T21:40:57-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-02T21:40:57-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
+{"image":"https://zitniklab.hms.harvard.edu/img/zhenglun_kong.png","url":"https://zitniklab.hms.harvard.edu/products/zhenglun_kong/","mainEntityOfPage":{"@type":"WebPage","@id":"https://zitniklab.hms.harvard.edu/products/zhenglun_kong/"},"author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Zhenglun Kong","dateModified":"2024-12-16T01:28:04-05:00","description":"Artificial Intelligence (AI), Medicine, Science, and Drug Discovery","datePublished":"2024-12-16T01:28:04-05:00","@type":"BlogPosting","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
diff --git a/projects/Clinical-knowledge-embeddings/index.html b/projects/Clinical-knowledge-embeddings/index.html
index 7d0b7d2b..4361af16 100644
--- a/projects/Clinical-knowledge-embeddings/index.html
+++ b/projects/Clinical-knowledge-embeddings/index.html
@@ -203,15 +203,15 @@ <h2 id="clinical-vocabulary-embeddings-capture-medical-knowledge-consensus-acros
 
 <h2 id="publication">Publication</h2>
 
-<p><a href="#">Unified Clinical Vocabulary Embeddings for Advancing Precision Medicine</a><br />
+<p><a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">Unified Clinical Vocabulary Embeddings for Advancing Precision Medicine</a><br />
 Ruth Johnson, Uri Gottlieb, Galit Shaham, Lihi Eisen, Jacob Waxman, Stav Devons-Sberro, Curtis R. Ginder, Peter Hong, Raheel Sayeed, Ben Y. Reis, Ran D. Balicer, Noa Dagan, and Marinka Zitnik<br />
-<em>In Review</em> 2024 <a href="#">[MedRxiv]</a></p>
+<em>In Review</em> 2024 <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">[medRxiv]</a></p>
 
 <div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>@article{johnson2024unified,
   title={Unified Clinical Vocabulary Embeddings for Advancing Precision Medicine},
   author={Johnson, Ruth and Gottlieb, Uri and Shaham, Galit and Eisen, Lihi and Waxman, Jacob and Devons-Sberro, Stav and Ginder, Curtis R. and Hong, Peter and Sayeed, Raheel and Reis, Ben Y. and Balicer, Ran D. and Dagan, Noa and Zitnik, Marinka},
   journal={medrxiv},
-  url={},
+  url={https://www.medrxiv.org/content/10.1101/2024.12.03.24318322},
   year={2024}
 }
 </code></pre></div></div>
@@ -252,6 +252,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -340,8 +424,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -728,90 +812,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/G-Meta/index.html b/projects/G-Meta/index.html
index 55956c20..24226aaf 100644
--- a/projects/G-Meta/index.html
+++ b/projects/G-Meta/index.html
@@ -211,6 +211,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -299,8 +383,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -687,90 +771,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/GNNDelete/index.html b/projects/GNNDelete/index.html
index 1842bf9b..6f976cb3 100644
--- a/projects/GNNDelete/index.html
+++ b/projects/GNNDelete/index.html
@@ -226,6 +226,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -314,8 +398,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -702,90 +786,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/GNNGuard/index.html b/projects/GNNGuard/index.html
index e660b245..5fe0dcfc 100644
--- a/projects/GNNGuard/index.html
+++ b/projects/GNNGuard/index.html
@@ -203,6 +203,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -291,8 +375,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -679,90 +763,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/GraphXAI/index.html b/projects/GraphXAI/index.html
index d5cf1fca..4f98b565 100644
--- a/projects/GraphXAI/index.html
+++ b/projects/GraphXAI/index.html
@@ -259,6 +259,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -347,8 +431,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -735,90 +819,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/KGARevion/index.html b/projects/KGARevion/index.html
index 3eb8b429..69b85d8e 100644
--- a/projects/KGARevion/index.html
+++ b/projects/KGARevion/index.html
@@ -209,6 +209,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -297,8 +381,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -685,90 +769,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/Madrigal/index.html b/projects/Madrigal/index.html
index 9a39cfba..e05b8ec5 100644
--- a/projects/Madrigal/index.html
+++ b/projects/Madrigal/index.html
@@ -201,6 +201,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -289,8 +373,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -677,90 +761,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/Milieu/index.html b/projects/Milieu/index.html
index 32764091..cd8da151 100644
--- a/projects/Milieu/index.html
+++ b/projects/Milieu/index.html
@@ -216,6 +216,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -304,8 +388,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -692,90 +776,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/NIFTY/index.html b/projects/NIFTY/index.html
index a82da201..5413baca 100644
--- a/projects/NIFTY/index.html
+++ b/projects/NIFTY/index.html
@@ -236,6 +236,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -324,8 +408,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -712,90 +796,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/PDGrapher/index.html b/projects/PDGrapher/index.html
index b7ddced6..81e3ad83 100644
--- a/projects/PDGrapher/index.html
+++ b/projects/PDGrapher/index.html
@@ -238,6 +238,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -326,8 +410,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -714,90 +798,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/PINNACLE/index.html b/projects/PINNACLE/index.html
index ef0d2010..dea899a1 100644
--- a/projects/PINNACLE/index.html
+++ b/projects/PINNACLE/index.html
@@ -253,6 +253,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -341,8 +425,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -729,90 +813,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/PocketFlow/index.html b/projects/PocketFlow/index.html
index f93b98ac..05e1e473 100644
--- a/projects/PocketFlow/index.html
+++ b/projects/PocketFlow/index.html
@@ -193,6 +193,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -281,8 +365,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -669,90 +753,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/PocketGen/index.html b/projects/PocketGen/index.html
index 9f312522..5f9054aa 100644
--- a/projects/PocketGen/index.html
+++ b/projects/PocketGen/index.html
@@ -233,6 +233,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -321,8 +405,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -709,90 +793,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/PrimeKG/index.html b/projects/PrimeKG/index.html
index 212a4a55..59b110c3 100644
--- a/projects/PrimeKG/index.html
+++ b/projects/PrimeKG/index.html
@@ -209,6 +209,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -297,8 +381,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -685,90 +769,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/REMAP/index.html b/projects/REMAP/index.html
index 47b4dea8..68d04a96 100644
--- a/projects/REMAP/index.html
+++ b/projects/REMAP/index.html
@@ -220,6 +220,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -308,8 +392,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -696,90 +780,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/Raincoat/index.html b/projects/Raincoat/index.html
index f40988e2..a7dda5e0 100644
--- a/projects/Raincoat/index.html
+++ b/projects/Raincoat/index.html
@@ -258,6 +258,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -346,8 +430,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -734,90 +818,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/Raindrop/index.html b/projects/Raindrop/index.html
index c7496212..b03e72f1 100644
--- a/projects/Raindrop/index.html
+++ b/projects/Raindrop/index.html
@@ -234,6 +234,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -322,8 +406,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -710,90 +794,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/SHEPHERD/index.html b/projects/SHEPHERD/index.html
index e1bffb1b..da538a1d 100644
--- a/projects/SHEPHERD/index.html
+++ b/projects/SHEPHERD/index.html
@@ -255,6 +255,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -343,8 +427,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -731,90 +815,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/SIPT/index.html b/projects/SIPT/index.html
index d07440c9..dda88a8a 100644
--- a/projects/SIPT/index.html
+++ b/projects/SIPT/index.html
@@ -217,6 +217,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -305,8 +389,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -693,90 +777,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/SPECTRA/index.html b/projects/SPECTRA/index.html
index d2840e3e..ec724a0c 100644
--- a/projects/SPECTRA/index.html
+++ b/projects/SPECTRA/index.html
@@ -4,16 +4,16 @@
   <head>
     <meta charset="utf-8">
     <meta name="viewport" content="width=device-width, initial-scale=1">
-    <title>Evaluating Generalizability of Artificial Intelligence Models for Molecular Datasets - Zitnik Lab</title>
+    <title>Evaluating Generalizability of Molecular AI Models - Zitnik Lab</title>
     <link rel="stylesheet" href="/assets/css/app.css">
     <link rel="shortcut icon" type="image/png"
            href="/favicon.png" 
     />
     <script defer src="https://use.fontawesome.com/releases/v5.3.1/js/all.js"></script>
     <!-- Begin Jekyll SEO tag v2.6.1 -->
-<title>Evaluating Generalizability of Artificial Intelligence Models for Molecular Datasets | Zitnik Lab</title>
+<title>Evaluating Generalizability of Molecular AI Models | Zitnik Lab</title>
 <meta name="generator" content="Jekyll v3.8.6" />
-<meta property="og:title" content="Evaluating Generalizability of Artificial Intelligence Models for Molecular Datasets" />
+<meta property="og:title" content="Evaluating Generalizability of Molecular AI Models" />
 <meta name="author" content="Marinka Zitnik" />
 <meta property="og:locale" content="en_US" />
 <meta name="description" content="SPECTRA paves the way for a more comprehensive evaluation of foundation models in molecular biology." />
@@ -22,11 +22,11 @@
 <meta property="og:url" content="https://zitniklab.hms.harvard.edu/projects/SPECTRA/" />
 <meta property="og:site_name" content="Zitnik Lab" />
 <meta name="twitter:card" content="summary" />
-<meta property="twitter:title" content="Evaluating Generalizability of Artificial Intelligence Models for Molecular Datasets" />
+<meta property="twitter:title" content="Evaluating Generalizability of Molecular AI Models" />
 <meta name="twitter:site" content="@marinkazitnik" />
 <meta name="twitter:creator" content="@Marinka Zitnik" />
 <script type="application/ld+json">
-{"url":"https://zitniklab.hms.harvard.edu/projects/SPECTRA/","author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Evaluating Generalizability of Artificial Intelligence Models for Molecular Datasets","description":"SPECTRA paves the way for a more comprehensive evaluation of foundation models in molecular biology.","@type":"WebPage","@context":"https://schema.org"}</script>
+{"url":"https://zitniklab.hms.harvard.edu/projects/SPECTRA/","author":{"@type":"Person","name":"Marinka Zitnik"},"headline":"Evaluating Generalizability of Molecular AI Models","description":"SPECTRA paves the way for a more comprehensive evaluation of foundation models in molecular biology.","@type":"WebPage","@context":"https://schema.org"}</script>
 <!-- End Jekyll SEO tag -->
 <script async src="https://www.googletagmanager.com/gtag/js?id=UA-162129505-1"></script>
 <script>
@@ -121,7 +121,7 @@
         <section class="hero  is-medium  is-bold is-primary"  style="background: url('/hero.jpg') no-repeat center center; background-size: cover;" >
     <div class="hero-body">
         <div class="container">
-            <p class="title is-2">Evaluating Generalizability of Artificial Intelligence Models for Molecular Datasets</p>
+            <p class="title is-2">Evaluating Generalizability of Molecular AI Models</p>
             <p class="subtitle is-3"></p>
             
         </div>
@@ -143,23 +143,16 @@
     <div class="box has-background-info has-text-white">
 
 <p>
-Deep learning has made rapid advances in modeling molecular sequencing data. Despite achieving high performance on benchmarks, it remains unclear to what extent deep learning models learn general principles and generalize to previously unseen sequences. 
+Deep learning has made rapid advances in modelling molecular sequencing data. Despite achieving high performance on benchmarks, it remains unclear to what extent deep learning models learn general principles and generalize to previously unseen sequences. Benchmarks traditionally interrogate model generalizability by generating metadata- or sequence similarity-based train and test splits of input data before assessing model performance. 
 </p>
-
-<p>
-Benchmarks traditionally interrogate model generalizability by generating metadata based (MB) or sequence-similarity based (SB) train and test splits of input data before assessing model performance. Here, we show that this approach mischaracterizes model generalizability by failing to consider the full spectrum of cross-split overlap, i.e., similarity between train and test splits. 
-</p>
-
 <p>
-We introduce SPECTRA, a spectral framework for comprehensive model evaluation. For a given model and input data, SPECTRA plots model performance as a function of decreasing cross-split overlap and reports the area under this curve as a measure of generalizability. 
+Here we show that this approach mischaracterizes model generalizability by failing to consider the full spectrum of cross-split overlap, that is, similarity between train and test splits. We introduce SPECTRA, the spectral framework for model evaluation. Given a model and a dataset, SPECTRA plots model performance as a function of decreasing cross-split overlap and reports the area under this curve as a measure of generalizability. 
 </p>
-
 <p>
-We use SPECTRA with 18 sequencing datasets and phenotypes ranging from antibiotic resistance in tuberculosis to protein-ligand binding to evaluate the generalizability of 19 state-of-the-art deep learning models, including large language models, graph neural networks, diffusion models, and convolutional neural networks. We show that SB and MB splits provide an incomplete assessment of model generalizability. 
+We use SPECTRA with 18 sequencing datasets and phenotypes ranging from antibiotic resistance in tuberculosis to protein–ligand binding and evaluate the generalizability of 19 state-of-the-art deep learning models, including large language models, graph neural networks, diffusion models and convolutional neural networks. We show that sequence similarity- and metadata-based splits provide an incomplete assessment of model generalizability. 
 </p>
-
 <p>
-Using SPECTRA, we find as cross-split overlap decreases, deep learning models consistently exhibit a reduction in performance in a task- and model-dependent manner. Although no model consistently achieved the highest performance across all tasks, we show that deep learning models can, in some cases, generalize to previously unseen sequences on specific tasks. SPECTRA paves the way toward a better understanding of how foundation models generalize in biology.
+Using SPECTRA, we find that as cross-split overlap decreases, deep learning models consistently show reduced performance, varying by task and model. Although no model consistently achieved the highest performance across all tasks, deep learning models can, in some cases, generalize to previously unseen sequences on specific tasks. SPECTRA advances our understanding of how foundation models generalize in biological applications.
 </p>
 </div>
 
@@ -169,15 +162,15 @@
 
 <h2 id="publication">Publication</h2>
 
-<p><a href="https://www.biorxiv.org/content/10.1101/2024.02.25.581982">Evaluating Generalizability of Artificial Intelligence Models for Molecular Datasets</a><br />
+<p><a href="https://rdcu.be/d2D0z">Evaluating Generalizability of Artificial Intelligence Models for Molecular Datasets</a><br />
 Yasha Ektefaie, Andrew Shen, Daria Bykova, Maximillian Marin, Marinka Zitnik* and Maha Farhat*<br />
-<em>In Review</em> 2024 <a href="https://www.biorxiv.org/content/10.1101/2024.02.25.581982">[bioRxiv]</a></p>
+<em>Nature Machine Intelligence</em> 2024 <a href="https://www.biorxiv.org/content/10.1101/2024.02.25.581982">[bioRxiv]</a></p>
 
 <div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>@article{ektefaie2024evaluating,
   title={Evaluating Generalizability of Artificial Intelligence Models for Molecular Datasets},
   author={Ektefaie, Yasha and Shen, Andrew and Bykova, Daria and Maximillian, Marin and Zitnik, Marinka* and Farhat, Maha*},
-  journal={bioRxiv},
-  url={https://www.biorxiv.org/content/10.1101/2024.02.25.581982v1},
+  journal={Nature Machine Intelligence},
+  url={https://rdcu.be/d2D0z},
   year={2024}
 }
 </code></pre></div></div>
@@ -205,6 +198,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -293,8 +370,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -681,90 +758,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/SubGNN/index.html b/projects/SubGNN/index.html
index 38a2dcb1..017f048d 100644
--- a/projects/SubGNN/index.html
+++ b/projects/SubGNN/index.html
@@ -232,6 +232,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -320,8 +404,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -708,90 +792,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/TF-C/index.html b/projects/TF-C/index.html
index 9fbd87f2..25b17861 100644
--- a/projects/TF-C/index.html
+++ b/projects/TF-C/index.html
@@ -274,6 +274,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -362,8 +446,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -750,90 +834,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/TimeX/index.html b/projects/TimeX/index.html
index c108319f..73599cb1 100644
--- a/projects/TimeX/index.html
+++ b/projects/TimeX/index.html
@@ -235,6 +235,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -323,8 +407,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -711,90 +795,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/TxGNN/index.html b/projects/TxGNN/index.html
index 68210ae5..30ee8fed 100644
--- a/projects/TxGNN/index.html
+++ b/projects/TxGNN/index.html
@@ -223,6 +223,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -311,8 +395,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -699,90 +783,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/UniTS/index.html b/projects/UniTS/index.html
index 4ae12a09..9acf5467 100644
--- a/projects/UniTS/index.html
+++ b/projects/UniTS/index.html
@@ -237,6 +237,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -325,8 +409,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -713,90 +797,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/metapaths/index.html b/projects/metapaths/index.html
index 751eae57..d6d421c6 100644
--- a/projects/metapaths/index.html
+++ b/projects/metapaths/index.html
@@ -199,6 +199,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -287,8 +371,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -675,90 +759,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/patient-safety/index.html b/projects/patient-safety/index.html
index 0e9cb850..838b4b03 100644
--- a/projects/patient-safety/index.html
+++ b/projects/patient-safety/index.html
@@ -317,6 +317,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -405,8 +489,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -793,90 +877,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/projects/scCIPHER/index.html b/projects/scCIPHER/index.html
index 3161b39a..a76bc15f 100644
--- a/projects/scCIPHER/index.html
+++ b/projects/scCIPHER/index.html
@@ -195,6 +195,90 @@ <h2 id="authors">Authors</h2>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -283,8 +367,8 @@ <h2 id="authors">Authors</h2>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -671,90 +755,6 @@ <h2 id="authors">Authors</h2>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/publications/index.html b/publications/index.html
index 07d55a58..d4f33151 100644
--- a/publications/index.html
+++ b/publications/index.html
@@ -163,6 +163,90 @@
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -251,8 +335,8 @@
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -639,90 +723,6 @@
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/publications/thumbnails/ProCyon25.png b/publications/thumbnails/ProCyon25.png
new file mode 100644
index 00000000..012ef233
Binary files /dev/null and b/publications/thumbnails/ProCyon25.png differ
diff --git a/publications/thumbnails/clinical-knowledge-embeddings.png b/publications/thumbnails/clinical-knowledge-embeddings.png
new file mode 100644
index 00000000..80e69cc8
Binary files /dev/null and b/publications/thumbnails/clinical-knowledge-embeddings.png differ
diff --git a/pubs.json b/pubs.json
index 48b93dec..255a46d2 100644
--- a/pubs.json
+++ b/pubs.json
@@ -34,6 +34,77 @@
       }
     },
 
+     {
+      "key": "submission24f",
+      "author": ["Shanghua Gao", "Ada Fang*", "Yepeng Huang*", "Valentina Giunchiglia*", "Ayush Noori*", "Jonathan Richard Schwarz", "Yasha Ektefaie", "Jovana Kondic", "Marinka Zitnik"],
+      "title": "Empowering Biomedical Discovery with AI Agents",
+      "venue": "Cell",
+      "year": "2024",
+      "thumbnail": "AIAgents.png",
+      "pdf": "https://www.cell.com/cell/fulltext/S0092-8674(24)01070-5",
+      "url": "https://www.cell.com/cell/fulltext/S0092-8674(24)01070-5",
+      "type": "journal",
+      "supp":
+      {
+        "arXiv": "https://arxiv.org/abs/2404.02831"
+      }
+    },
+
+     {
+      "key": "submission24u",
+      "author": ["Owen Queen", "Yepeng Huang", "Robert Calef", "Valentina Giunchiglia", "Tianlong Chen", "George Dasoulas", "LeAnn Tai", "Yasha Ektefaie", "Ayush Noori", "Joseph Brown", "Tom Cobley", "Karin Hrovatin", "Tom Hartvigsen", "Fabian J. Theis", "Bradley L. Pentelute", "Vikram Khurana", "Manolis Kellis", "Marinka Zitnik"],
+      "title": "ProCyon: A multimodal foundation model for protein phenotypes",
+      "venue": "In Review",
+      "year": "2024",
+      "thumbnail": "ProCyon25.png",
+      "pdf": "",
+      "url": "https://www.biorxiv.org/content/10.1101/2024.12.10.627665",
+      "type": "journal",
+      "supp":
+      {
+        "bioRxiv": "https://www.biorxiv.org/content/10.1101/2024.12.10.627665",
+        "project website": "https://zitniklab.hms.harvard.edu/ProCyon/",
+        "code": "https://github.com/mims-harvard/ProCyon"
+      }
+    },
+
+     {
+      "key": "submission24a",
+      "author": ["Guadalupe Gonzalez", "Isuru Herath", "Kirill Veselkov", "Michael Bronstein", "Marinka Zitnik"],
+      "title": "Combinatorial Prediction of Therapeutic Perturbations Using Causally-Inspired Neural Networks",
+      "venue": "In Review",
+      "year": "2024",
+      "thumbnail": "PDGrapher24.png",
+      "pdf": "",
+      "url": "https://www.biorxiv.org/content/10.1101/2024.01.03.573985",
+      "type": "journal",
+      "supp":
+      {
+        "bioRxiv": "https://www.biorxiv.org/content/10.1101/2024.01.03.573985",
+        "project website": "https://zitniklab.hms.harvard.edu/projects/PDGrapher/",
+        "code": "https://github.com/mims-harvard/PDGrapher"
+      }
+    },
+
+     {
+      "key": "submission24t",
+      "author": ["Ruth Johnson", "Uri Gottlieb", "Galit Shaham", "Lihi Eisen", "Jacob Waxman", "Stav Devons-Sberro", "Curtis R. Ginder", "Peter Hong", "Raheel Sayeed", "Ben Y. Reis", "Ran D. Balicer", "Noa Dagan", "Marinka Zitnik"],
+      "title": "Unified Clinical Vocabulary Embeddings for Advancing Precision Medicine",
+      "venue": "In Review",
+      "year": "2024",
+      "thumbnail": "clinical-knowledge-embeddings.png",
+      "pdf": "",
+      "url": "https://www.medrxiv.org/content/10.1101/2024.12.03.24318322",
+      "type": "journal",
+      "supp":
+      {
+        "medRxiv": "https://www.medrxiv.org/content/10.1101/2024.12.03.24318322",
+        "code": "https://github.com/mims-harvard/Clinical-knowledge-embeddings",
+        "project website": "https://zitniklab.hms.harvard.edu/projects/Clinical-knowledge-embeddings"
+      }
+    },
+
+
      {
       "key": "submission23g",
       "author": ["Michelle M Li", "Yepeng Huang", "Marissa Sumathipala", "Man Qing Liang", "Alberto Valdeolivas", "Ashwin N Ananthakrishnan",  "Katherine Liao", "Daniel Marbach", "Marinka Zitnik"],
@@ -80,41 +151,6 @@
       }
     },
 
-     {
-      "key": "submission24f",
-      "author": ["Shanghua Gao", "Ada Fang*", "Yepeng Huang*", "Valentina Giunchiglia*", "Ayush Noori*", "Jonathan Richard Schwarz", "Yasha Ektefaie", "Jovana Kondic", "Marinka Zitnik"],
-      "title": "Empowering Biomedical Discovery with AI Agents",
-      "venue": "Cell",
-      "year": "2024",
-      "thumbnail": "AIAgents.png",
-      "pdf": "https://www.cell.com/cell/fulltext/S0092-8674(24)01070-5",
-      "url": "https://www.cell.com/cell/fulltext/S0092-8674(24)01070-5",
-      "type": "journal",
-      "supp":
-      {
-        "arXiv": "https://arxiv.org/abs/2404.02831"
-      }
-    },
-
-
-     {
-      "key": "submission24a",
-      "author": ["Guadalupe Gonzalez", "Isuru Herath", "Kirill Veselkov", "Michael Bronstein", "Marinka Zitnik"],
-      "title": "Combinatorial Prediction of Therapeutic Perturbations Using Causally-Inspired Neural Networks",
-      "venue": "In Review",
-      "year": "2024",
-      "thumbnail": "PDGrapher24.png",
-      "pdf": "",
-      "url": "https://www.biorxiv.org/content/10.1101/2024.01.03.573985",
-      "type": "journal",
-      "supp":
-      {
-        "bioRxiv": "https://www.biorxiv.org/content/10.1101/2024.01.03.573985",
-        "project website": "https://zitniklab.hms.harvard.edu/projects/PDGrapher/",
-        "code": "https://github.com/mims-harvard/PDGrapher"
-      }
-    },
-
      {
       "key": "submission24d",
       "author": ["Zaixi Zhang", "Wanxiang Shen", "Qi Liu", "Marinka Zitnik"],
@@ -137,11 +173,11 @@
       "key": "submission24c",
       "author": ["Yasha Ektefaie", "Andrew Shen", "Daria Bykova", "Maximillian Marin", "Marinka Zitnik*", "Maha R Farhat*"],
       "title": "Evaluating Generalizability of Artificial Intelligence Models for Molecular Datasets",
-      "venue": "Nature Machine Intelligence (in press)",
+      "venue": "Nature Machine Intelligence",
       "year": "2024",
       "thumbnail": "SPECTRA.png",
-      "pdf": "",
-      "url": "https://www.biorxiv.org/content/10.1101/2024.02.25.581982",
+      "pdf": "https://rdcu.be/d2D0z",
+      "url": "https://www.nature.com/articles/s42256-024-00931-6",
       "type": "journal",
       "supp":
       {
diff --git a/research/index.html b/research/index.html
index 22b0a662..87173074 100644
--- a/research/index.html
+++ b/research/index.html
@@ -333,6 +333,90 @@ <h4 id="initiatives-1">Initiatives:</h4>
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -421,8 +505,8 @@ <h4 id="initiatives-1">Initiatives:</h4>
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -809,90 +893,6 @@ <h4 id="initiatives-1">Initiatives:</h4>
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">
diff --git a/sitemap.xml b/sitemap.xml
index 302ca5c6..c368ab1b 100644
--- a/sitemap.xml
+++ b/sitemap.xml
@@ -581,104 +581,128 @@
 <lastmod>2024-11-17T00:00:00-05:00</lastmod>
 </url>
 <url>
+<loc>https://zitniklab.hms.harvard.edu/2024/12/07/SPECTRA/</loc>
+<lastmod>2024-12-07T00:00:00-05:00</lastmod>
+</url>
+<url>
+<loc>https://zitniklab.hms.harvard.edu/2024/12/07/UnifiedClinicalVocabularyEmbeddings/</loc>
+<lastmod>2024-12-07T00:00:00-05:00</lastmod>
+</url>
+<url>
+<loc>https://zitniklab.hms.harvard.edu/2024/12/16/ProCyon/</loc>
+<lastmod>2024-12-16T00:00:00-05:00</lastmod>
+</url>
+<url>
+<loc>https://zitniklab.hms.harvard.edu/products/aarthi_venkat/</loc>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
+</url>
+<url>
 <loc>https://zitniklab.hms.harvard.edu/products/ada_fang/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/alejandro_velez_arce/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/andrew_shen/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/ayush_noori/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/grey_kuling/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/inaki_arango/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/intae_moon/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
+</url>
+<url>
+<loc>https://zitniklab.hms.harvard.edu/products/katya_ivshina/</loc>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/kevin_li/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/kexin_chen/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/marinka_zitnik/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
+</url>
+<url>
+<loc>https://zitniklab.hms.harvard.edu/products/michael_sun/</loc>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/michelle_dai/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/michelle_li/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/pengwei_sui/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/richard_zhu/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/robert_calef/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/ruth_johnson/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/shanghua_gao/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/valentina_giunchiglia/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/wanxiang_shen/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/xiang_lin/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/xiaorui_su/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/yasha_ektefaie/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/yepeng_huang/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/ying_jin/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/products/zhenglun_kong/</loc>
-<lastmod>2024-12-02T21:40:57-05:00</lastmod>
+<lastmod>2024-12-16T01:28:04-05:00</lastmod>
 </url>
 <url>
 <loc>https://zitniklab.hms.harvard.edu/404/</loc>
diff --git a/software/index.html b/software/index.html
index 4748c9c0..2247db74 100644
--- a/software/index.html
+++ b/software/index.html
@@ -148,6 +148,45 @@
     </div>
 
     
+        <section class="showcase">
+<!--            <figure class="image  is-16by9 ">-->
+<!--                <img src="" />-->
+<!--            </figure>-->
+            <div class="showcase-content">
+                <div class="columns is-centered">
+                    <div class="column is-8-desktop is-12-tablet">
+                        <p class="title">ProCyon</p>
+                        <p class="subtitle">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes.</p>
+
+                        
+                        
+                        <div class="content">
+                            <p>
+</p>
+                        </div>
+
+                        
+                        
+
+                        
+
+                        
+                        <a href="https://github.com/mims-harvard/ProCyon" class="button is-primary">
+                            View ProCyon
+                        </a>
+                        
+                        
+                        <a href="https://zitniklab.hms.harvard.edu/ProCyon/" class="button is-primary">
+                            ProCyon Website
+                        </a>
+                        
+                                                
+                    </div>
+                </div>
+
+            </div>
+        </section>
+    
         <section class="showcase">
 <!--            <figure class="image  is-16by9 ">-->
 <!--                <img src="" />-->
@@ -1899,6 +1938,90 @@
 
 <div class="columns is-multiline">
     
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/16/ProCyon/">Foundation Model for Protein Phenotypes</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Foundation Model for Protein Phenotypes</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 16, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+</p>-->
+            <p>New paper: <a href="https://www.biorxiv.org/content/10.1101/2024.12.10.627665v1">ProCyon is a groundbreaking foundation model for modeling, generating, and predicting protein phenotypes</a>. <a href="https://zitniklab.hms.harvard.edu/ProCyon/">[Project website]</a> <a href="https://github.com/mims-harvard/ProCyon">[Code]</a></p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/16/ProCyon/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 16, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/">Unified Clinical Vocabulary Embeddings</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">Unified Clinical Vocabulary Embeddings</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+</p>-->
+            <p>New paper: <a href="https://www.medrxiv.org/content/10.1101/2024.12.03.24318322">A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies.</a> (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/UnifiedClinicalVocabularyEmbeddings/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
+    <div class="column is-12">
+        <div class="card">
+    
+    <header class="card-header">
+<!--        <a class="card-header-title" href="/2024/12/07/SPECTRA/">SPECTRA in Nature Machine Intelligence</a>-->
+        <p class="card-header-title">Dec 2024: &nbsp; <span class="has-text-primary">SPECTRA in Nature Machine Intelligence</span></p>
+<!--        <p class="card-header-item">Dec 2024</p>-->
+<!--        <p class="card-footer-item">Dec 7, 2024</p>-->
+    </header>
+    
+    <div class="card-content">
+<!--        <div class="content">-->
+<!--            -->
+<!--            <p><p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+</p>-->
+            <p>Are biomedical AI models truly as smart as they seem? <a href="https://www.nature.com/articles/s42256-024-00931-6">SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity.</a> SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.</p>
+
+<!--        </div>-->
+<!--        <div class="has-text-centered">-->
+<!--            <a href="/2024/12/07/SPECTRA/" class="button is-primary">Read more</a>-->
+<!--        </div>-->
+    </div>
+<!--    <footer class="card-footer">-->
+<!--        <p class="card-footer-item">Published: Dec 7, 2024</p>-->
+<!--    </footer>-->
+</div>
+    </div>
+    
     <div class="column is-12">
         <div class="card">
     
@@ -1987,8 +2110,8 @@
         <div class="card">
     
     <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Property Prediction</a>-->
-        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Property Prediction</span></p>
+<!--        <a class="card-header-title" href="/2024/10/19/ACAnet/">Activity Cliffs in Molecular Properties</a>-->
+        <p class="card-header-title">Oct 2024: &nbsp; <span class="has-text-primary">Activity Cliffs in Molecular Properties</span></p>
 <!--        <p class="card-header-item">Oct 2024</p>-->
 <!--        <p class="card-footer-item">Oct 19, 2024</p>-->
     </header>
@@ -2375,90 +2498,6 @@
 </div>
     </div>
     
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/23/EfficientMLSeminar/">Efficient ML Seminar Series</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Efficient ML Seminar Series</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 23, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-</p>-->
-            <p>We started a <a href="https://efficientml.org/">Harvard University Efficient ML Seminar Series</a>. Congrats to Jonathan for spearheading this initiative. <a href="https://www.harvardmagazine.com/2024/03/scaling-artificial-intelligence">Harvard Magazine</a> covered the first meeting focusing on LLMs.</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/23/EfficientMLSeminar/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 23, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/04/UniTS/">UniTS - Unified Time Series Model</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">UniTS - Unified Time Series Model</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 4, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-</p>-->
-            <p><a href="https://arxiv.org/abs/2403.00131">UniTS is a unified time series model</a> that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. <a href="https://zitniklab.hms.harvard.edu/projects/UniTS/">Project website.</a></p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/04/UniTS/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 4, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
-    <div class="column is-12">
-        <div class="card">
-    
-    <header class="card-header">
-<!--        <a class="card-header-title" href="/2024/03/02/WeintraubAward/">Weintraub Graduate Student Award</a>-->
-        <p class="card-header-title">Mar 2024: &nbsp; <span class="has-text-primary">Weintraub Graduate Student Award</span></p>
-<!--        <p class="card-header-item">Mar 2024</p>-->
-<!--        <p class="card-footer-item">Mar 2, 2024</p>-->
-    </header>
-    
-    <div class="card-content">
-<!--        <div class="content">-->
-<!--            -->
-<!--            <p><p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-</p>-->
-            <p>Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. <a href="https://dbmi.hms.harvard.edu/news/li-receives-weintraub-graduate-student-award">News Story.</a> Congratulations!</p>
-
-<!--        </div>-->
-<!--        <div class="has-text-centered">-->
-<!--            <a href="/2024/03/02/WeintraubAward/" class="button is-primary">Read more</a>-->
-<!--        </div>-->
-    </div>
-<!--    <footer class="card-footer">-->
-<!--        <p class="card-footer-item">Published: Mar 2, 2024</p>-->
-<!--    </footer>-->
-</div>
-    </div>
-    
 
     <div class="column is-12">
         <div class="card">