forked from Pay20Y/SAR_TF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
232 lines (203 loc) · 13.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import sys
import os
import time
import tensorflow as tf
import numpy as np
from sar_model import SARModel
# from data_provider.data_generator import get_batch
# from data_provider.lmdb_data_generator import get_batch
from data_provider import data_generator
from data_provider import lmdb_data_generator
from data_provider.data_utils import get_vocabulary
from utils.transcription_utils import idx2label, calc_metrics
from config import get_args
def get_data(image_dir, gt_path, voc_type, max_len, num_samples, height, width, batch_size, workers, keep_ratio, with_aug):
data_list = []
if isinstance(image_dir, list) and len(image_dir) > 1:
# assert len(image_dir) == len(gt_path), "datasets and gt are not corresponding"
assert batch_size % len(image_dir) == 0, "batch size should divide dataset num"
per_batch_size = batch_size // len(image_dir)
if None in gt_path:
# Using lmdb input
for i in image_dir:
data_list.append(lmdb_data_generator.get_batch(workers, lmdb_dir=i, input_height=height, input_width=width, batch_size=per_batch_size, max_len=max_len, voc_type=voc_type, keep_ratio=keep_ratio, with_aug=with_aug))
else:
for i, g in zip(image_dir, gt_path):
data_list.append(data_generator.get_batch(workers, image_dir=i, gt_path=g, input_height=height, input_width=width, batch_size=per_batch_size, max_len=max_len, voc_type=voc_type, keep_ratio=keep_ratio, with_aug=with_aug))
else:
if isinstance(image_dir, list):
if None in gt_path:
data = lmdb_data_generator.get_batch(workers, lmdb_dir=image_dir[0], input_height=height, input_width=width, batch_size=batch_size, max_len=max_len, voc_type=voc_type, keep_ratio=keep_ratio, with_aug=with_aug)
else:
data = data_generator.get_batch(workers, image_dir=image_dir[0], gt_path=gt_path[0], input_height=height, input_width=width, batch_size=batch_size, max_len=max_len, voc_type=voc_type, keep_ratio=keep_ratio, with_aug=with_aug)
else:
if gt_path is None:
data = lmdb_data_generator.get_batch(workers, lmdb_dir=image_dir, input_height=height, input_width=width, batch_size=batch_size, max_len=max_len, voc_type=voc_type, keep_ratio=keep_ratio, with_aug=with_aug)
else:
data = data_generator.get_batch(workers, image_dir=image_dir, gt_path=gt_path, input_height=height, input_width=width, batch_size=batch_size, max_len=max_len, voc_type=voc_type, keep_ratio=keep_ratio, with_aug=with_aug)
data_list.append(data)
return data_list
def get_batch_data(data_list, batch_size):
batch_images = []
batch_labels = []
batch_labels_mask = []
batch_labels_str = []
batch_widths = []
for data in data_list:
_data = next(data)
batch_images.append(_data[0])
batch_labels.append(_data[1])
batch_labels_mask.append(_data[2])
batch_labels_str.extend(_data[4])
batch_widths.append(_data[5])
batch_images = np.concatenate(batch_images, axis=0)
batch_labels = np.concatenate(batch_labels, axis=0)
batch_labels_mask = np.concatenate(batch_labels_mask, axis=0)
batch_widths = np.concatenate(batch_widths, axis=0)
assert len(batch_images) == batch_size, "concat data is not equal to batch size"
return batch_images, batch_labels, batch_labels_mask, batch_labels_str, batch_widths
def get_batch_data_dummy(batch_size, height, width, max_len):
batch_images = np.random.rand(batch_size, height, width, 3)
batch_labels = np.random.randint(0, 97, [batch_size, max_len])
batch_masks = np.random.randint(0, 2, [batch_size, max_len])
return batch_images, batch_labels, batch_masks
def main_train(args):
voc, char2id, id2char = get_vocabulary(voc_type=args.voc_type)
# Build graph
input_train_images = tf.placeholder(dtype=tf.float32, shape=[args.train_batch_size, args.height, args.width, 3], name="input_train_images")
input_train_images_width = tf.placeholder(dtype=tf.float32, shape=[args.train_batch_size], name="input_train_width")
input_train_labels = tf.placeholder(dtype=tf.int32, shape=[args.train_batch_size, args.max_len], name="input_train_labels")
input_train_labels_mask = tf.placeholder(dtype=tf.int32, shape=[args.train_batch_size, args.max_len], name="input_train_labels_mask")
input_val_images = tf.placeholder(dtype=tf.float32, shape=[args.val_batch_size, args.height, args.width, 3],name="input_val_images")
input_val_images_width = tf.placeholder(dtype=tf.float32, shape=[args.val_batch_size], name="input_val_width")
input_val_labels = tf.placeholder(dtype=tf.int32, shape=[args.val_batch_size, args.max_len], name="input_val_labels")
input_val_labels_mask = tf.placeholder(dtype=tf.int32, shape=[args.val_batch_size, args.max_len], name="input_val_labels_mask")
sar_model = SARModel(num_classes=len(voc),
encoder_dim=args.encoder_sdim,
encoder_layer=args.encoder_layers,
decoder_dim=args.decoder_sdim,
decoder_layer=args.decoder_layers,
decoder_embed_dim=args.decoder_edim,
seq_len=args.max_len,
is_training=True)
sar_model_val = SARModel(num_classes=len(voc),
encoder_dim=args.encoder_sdim,
encoder_layer=args.encoder_layers,
decoder_dim=args.decoder_sdim,
decoder_layer=args.decoder_layers,
decoder_embed_dim=args.decoder_edim,
seq_len=args.max_len,
is_training=False)
train_model_infer, train_attention_weights, train_pred = sar_model(input_train_images, input_train_labels,
input_train_images_width,
batch_size=args.train_batch_size, reuse=False)
train_loss = sar_model.loss(train_model_infer, input_train_labels, input_train_labels_mask)
val_model_infer, val_attention_weights, val_pred = sar_model_val(input_val_images, input_val_labels,
input_val_images_width,
batch_size=args.val_batch_size, reuse=True)
val_loss = sar_model_val.loss(val_model_infer, input_val_labels, input_val_labels_mask)
train_data_list = get_data(args.train_data_dir,
args.train_data_gt,
args.voc_type,
args.max_len,
args.num_train,
args.height,
args.width,
args.train_batch_size,
args.workers,
args.keep_ratio,
with_aug=args.aug)
val_data_list = get_data(args.test_data_dir,
args.test_data_gt,
args.voc_type,
args.max_len,
args.num_train,
args.height,
args.width,
args.val_batch_size,
args.workers,
args.keep_ratio,
with_aug=False)
global_step = tf.get_variable(name='global_step', initializer=tf.constant(0), trainable=False)
learning_rate = tf.train.exponential_decay(learning_rate=args.lr,
global_step=global_step,
decay_steps=args.decay_iter,
decay_rate=args.weight_decay,
staircase=True)
batch_norm_updates_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
grads = optimizer.compute_gradients(train_loss)
apply_gradient_op = optimizer.apply_gradients(grads, global_step=global_step)
# Save summary
os.makedirs(args.checkpoints, exist_ok=True)
tf.summary.scalar(name='train_loss', tensor=train_loss)
tf.summary.scalar(name='val_loss', tensor=val_loss)
tf.summary.scalar(name='learning_rate', tensor=learning_rate)
merge_summary_op = tf.summary.merge_all()
train_start_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
model_name = 'sar_{:s}.ckpt'.format(str(train_start_time))
model_save_path = os.path.join(args.checkpoints, model_name)
variable_averages = tf.train.ExponentialMovingAverage(0.997, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
with tf.control_dependencies([variables_averages_op, apply_gradient_op, batch_norm_updates_op]):
train_op = tf.no_op(name='train_op')
saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)
summary_writer = tf.summary.FileWriter(args.checkpoints)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
summary_writer.add_graph(sess.graph)
start_iter = 0
if args.resume == True and args.pretrained != '':
print('Restore model from {:s}'.format(args.pretrained))
ckpt_state = tf.train.get_checkpoint_state(args.pretrained)
model_path = os.path.join(args.pretrained, os.path.basename(ckpt_state.model_checkpoint_path))
saver.restore(sess=sess, save_path=model_path)
start_iter = sess.run(tf.train.get_global_step())
else:
print('Training from scratch')
init = tf.global_variables_initializer()
sess.run(init)
while start_iter < args.iters:
start_iter += 1
train_data = get_batch_data(train_data_list, args.train_batch_size)
_, train_loss_value, train_pred_value = sess.run([train_op, train_loss, train_pred], feed_dict={input_train_images: train_data[0],
input_train_labels: train_data[1],
input_train_labels_mask: train_data[2],
input_train_images_width: train_data[4]})
if start_iter % args.log_iter == 0:
print("Iter {} train loss= {:3f}".format(start_iter, train_loss_value))
if start_iter % args.summary_iter == 0:
val_data = get_batch_data(val_data_list, args.val_batch_size)
merge_summary_value, val_pred_value, val_loss_value = sess.run([merge_summary_op, val_pred, val_loss], feed_dict={input_train_images: train_data[0],
input_train_labels: train_data[1],
input_train_labels_mask: train_data[2],
input_train_images_width: train_data[4],
input_val_images: val_data[0],
input_val_labels: val_data[1],
input_val_labels_mask: val_data[2],
input_val_images_width: val_data[4]})
summary_writer.add_summary(summary=merge_summary_value, global_step=start_iter)
if start_iter % args.eval_iter == 0:
print("#" * 80)
print("train prediction \t train labels ")
for result, gt in zip(idx2label(train_pred_value), train_data[3]):
print("{} \t {}".format(result, gt))
print("#" * 80)
print("test prediction \t test labels ")
for result, gt in zip(idx2label(val_pred_value), val_data[3]):
print("{} \t {}".format(result, gt))
print("#" * 80)
train_metrics_result = calc_metrics(idx2label(train_pred_value), train_data[3], metrics_type="accuracy")
val_metrics_result = calc_metrics(idx2label(val_pred_value), val_data[3], metrics_type="accuracy")
print("Evaluation Iter {} test loss: {:3f} train accuracy: {:3f} test accuracy {:3f}".format(start_iter,
val_loss_value,
train_metrics_result,
val_metrics_result))
if start_iter % args.save_iter == 0:
print("Iter {} save to checkpoint".format(start_iter))
saver.save(sess, model_save_path, global_step=global_step)
if __name__ == "__main__":
args = get_args(sys.argv[1:])
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
main_train(args)