Skip to content

Latest commit

 

History

History
177 lines (135 loc) · 4.75 KB

File metadata and controls

177 lines (135 loc) · 4.75 KB

UPDATE

This is how it's done.

conda create --name tfgpu tensorflow-gpu

And that's that.

Tensorflow GPU install on ubuntu 16.04

These instructions are intended to set up a deep learning environment for GPU-powered tensorflow.
See here for pytorch GPU install instructions

After following these instructions you'll have:

  1. Ubuntu 16.04.
  2. Cuda 9.0 drivers installed.
  3. A conda environment with python 3.6.
  4. The latest tensorflow version with gpu support.

Step 0: Noveau drivers

Before you begin, you may need to disable the opensource ubuntu NVIDIA driver called nouveau.

  1. After you boot the linux system and are sitting at a login prompt, press ctrl+alt+F1 to get to a terminal screen. Login via this terminal screen.
  2. Create a file: /etc/modprobe.d/nouveau
  3. Put the following in the above file...
blacklist nouveau
options nouveau modeset=0
  1. reboot system
reboot
  1. On reboot, verify that noveau drivers are not loaded
lsmod | grep nouveau

If nouveau driver(s) are still loaded do not proceed with the installation guide and troubleshoot why it's still loaded.

From this stackoverflow solution

  1. When the GRUB boot menu appears : Highlight the Ubuntu menu entry and press the E key. Add the nouveau.modeset=0 parameter to the end of the linux line ... Then press F10 to boot.
  2. When login page appears press [ctrl + ALt + F1]
  3. Enter username + password
  4. Uninstall every NVIDIA related software:
sudo apt-get purge nvidia*  
sudo reboot   

Installation steps

  1. update apt-get
sudo apt-get update
  1. Install apt-get deps
sudo apt-get install openjdk-8-jdk git python-dev python3-dev python-numpy python3-numpy build-essential python-pip python3-pip python-virtualenv swig python-wheel libcurl3-dev curl   
  1. install nvidia drivers
# The 16.04 installer works with 16.10.
# download drivers
curl -O http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_9.0.176-1_amd64.deb

# download key to allow installation
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

# install actual package
sudo dpkg -i ./cuda-repo-ubuntu1604_9.0.176-1_amd64.deb

#  install cuda (but it'll prompt to install other deps, so we try to install twice with a dep update in between
sudo apt-get update
sudo apt-get install cuda-9-0   

2a. reboot Ubuntu

sudo reboot

2b. check nvidia driver install

nvidia-smi   

# you should see a list of gpus printed    
# if not, the previous steps failed.   
  1. Install cudnn
wget https://s3.amazonaws.com/open-source-william-falcon/cudnn-9.0-linux-x64-v7.1.tgz  
sudo tar -xzvf cudnn-9.0-linux-x64-v7.1.tgz  
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
  1. Add these lines to end of ~/.bashrc:
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda

4a. Reload bashrc

source ~/.bashrc
  1. Install miniconda
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh   

# press s to skip terms   

# Do you approve the license terms? [yes|no]
# yes

# Miniconda3 will now be installed into this location:
# accept the location

# Do you wish the installer to prepend the Miniconda3 install location
# to PATH in your /home/ghost/.bashrc ? [yes|no]
# yes    

5a. Reload bashrc

source ~/.bashrc
  1. Create conda env to install tf
conda create -n tensorflow

# press y a few times 
  1. Activate env
source activate tensorflow   
  1. Install tensorflow with GPU support for python 3.6
pip install tensorflow-gpu

# If the above fails, try the part below
# pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0-cp36-cp36m-linux_x86_64.whl
  1. Test tf install
# start python shell   
python

# run test script   
import tensorflow as tf   

hello = tf.constant('Hello, TensorFlow!')

# when you run sess, you should see a bunch of lines with the word gpu in them (if install worked)
# otherwise, not running on gpu
sess = tf.Session()
print(sess.run(hello))