diff --git a/M2/Macaulay2/packages/NormalToricVarieties/Sheaves.m2 b/M2/Macaulay2/packages/NormalToricVarieties/Sheaves.m2 index f48a30ab58..27994f110d 100644 --- a/M2/Macaulay2/packages/NormalToricVarieties/Sheaves.m2 +++ b/M2/Macaulay2/packages/NormalToricVarieties/Sheaves.m2 @@ -69,7 +69,7 @@ addHook((minimalPresentation, CoherentSheaf), Strategy => symbol NormalToricVari B := ideal X; N := saturate(image map(M,S^0,0), B); if N != 0 then M = M/N; - C := res M; + C := freeResolution M; -- is there a better bound? a := max(1, max flatten flatten apply(length C +1, i -> degrees C_i)); return sheaf(X, minimalPresentation Hom(B^[a], M)) ) @@ -117,7 +117,7 @@ setupHHOO = X -> ( RfromS := map (R, S, gens R); B := RfromS ideal X; -- use simplicial cohomology find the support sets - quasiCech := Hom (res (R^1/B), R^1); + quasiCech := Hom (freeResolution(R^1/B), R^1); supSets := delete ({}, subsets (toList (0..n-1))); d := dim X; sigma := new MutableHashTable; @@ -188,7 +188,7 @@ cohomology (ZZ, NormalToricVariety, CoherentSheaf) := Module => opts -> (i,X,F) ) else ( B := ideal X; - C := res M; + C := freeResolution M; deg := toList (degreeLength S : 0); bettiNum := flatten apply (1+length C, j -> apply (unique degrees C_j, alpha -> {j,alpha}));