Skip to content

Latest commit

 

History

History
166 lines (146 loc) · 6.72 KB

README.md

File metadata and controls

166 lines (146 loc) · 6.72 KB

Download Build Status License

Kotlin multiplatform implementation of Reactive Extensions.

Setup

Recommended minimum Gradle version is 5.3. Please read first the documentation about metadata publishing mode.

Add Bintray repository into your root build.gradle file:

repositories {
    maven {
        url  "https://dl.bintray.com/badoo/maven"
    }
}

There are a number of modules published:

  • reaktive - the main Reaktive library (multiplatform)
  • reaktive-annotations - collection of annotations (mutiplatform)
  • reaktive-testing - testing utilities (multiplatform)
  • utils - some utilities like Clock, AtomicReference, Lock, etc. (multiplatform)
  • coroutines-interop - Kotlin coroutines interoperability helpers (multiplatform)
  • rxjava2-interop - RxJava2 interoperability helpers (JVM and Android)
  • rxjava3-interop - RxJava3 interoperability helpers (JVM and Android)

Multiplatform module publications

Kotlin common (root publication):

implementation 'com.badoo.reaktive:<module-name>:<latest-version>'

JVM:

implementation 'com.badoo.reaktive:<module-name>-jvm:<latest-version>'

Android (debug and release):

implementation 'com.badoo.reaktive:<module-name>-android:<latest-version>'

iOS 32:

implementation 'com.badoo.reaktive:<module-name>-ios32:<latest-version>'

iOS 64:

implementation 'com.badoo.reaktive:<module-name>-ios64:<latest-version>'

iOS sim:

implementation 'com.badoo.reaktive:<module-name>-sim:<latest-version>'

JavaScript:

implementation 'com.badoo.reaktive:<module-name>-js:<latest-version>'

Linux x64:

implementation 'com.badoo.reaktive:<module-name>-linuxx64:<latest-version>'

Linux ARM 32 hfp:

implementation 'com.badoo.reaktive:<module-name>-linuxarm32hfp:<latest-version>'

Regular modules:

implementation 'com.badoo.reaktive:<module-name>:<latest-version>'

Typical dependencies configuration for MPP module (metadata mode)

kotlin {
    sourceSets {
        commonMain {
            dependencies {
                implementation 'com.badoo.reaktive:reaktive:<latest-version>'
                implementation 'com.badoo.reaktive:reaktive-annotations:<latest-version>'
                implementation 'com.badoo.reaktive:coroutines-interop:<latest-version>'
            }
        }

        commonTest {
            dependencies {
                implementation 'com.badoo.reaktive:reaktive-testing:<latest-version>'
            }
        }
    }
}

Features:

  • Multiplatform: JVM, Android, iOS, JavaScript, Linux X64, Linux ARM 32 hfp
  • Schedulers support: computation, IO, trampoline, main
  • True multithreading for Kotlin/Native (there are some limitations)
  • Thread local subscriptions without freezing for Kotlin/Native
  • Supported sources: Observable, Maybe, Single, Completable
  • Subjects: PublishSubject, BehaviorSubject
  • Interoperability with Kotlin Coroutines: conversions between coroutines (including Flow) and Reaktive
  • Interoperability with RxJava2 and RxJava3: conversion of sources between Reaktive and RxJava, ability to reuse RxJava's schedulers

Kotlin Native pitfalls

Kotlin Native memory model and concurrency are very special. In general shared mutable state between threads is not allowed. Since Reaktive supports multithreading in Kotlin Native, please read the following documents before using it:

Object detachment is relatively difficult to achieve and is very error-prone when the objects are created from outside and are not fully managed by the library. This is why Reaktive prefers frozen state. Here are some hints:

  • Any callback (and any captured objects) submitted to a Scheduler will be frozen
  • subscribeOn freezes both its upstream source and downstream observer, all the Disposables (upstream's and downstream's) are frozen as well, all the values (including errors) are not frozen by the operator
  • observeOn freezes only its downstream observer and all the values (including errors) passed through it, plus all the Disposables, upstream source is not frozen by the operator
  • Other operators that use scheduler (like debounce, timer, delay, etc.) behave same as observeOn in most of the cases

Thread local tricks to avoid freezing

Sometimes freezing is not acceptable, e.g. we might want to load some data in background and then update the UI. Obviously UI can not be frozen. With Reaktive it is possible to achieve such a behaviour in two ways:

Use threadLocal operator:

val values = mutableListOf<Any>()
var isFinished = false

observable<Any> { emitter ->
    // Background job
}
    .subscribeOn(ioScheduler)
    .observeOn(mainScheduler)
    .threadLocal()
    .doOnBeforeNext { values += it } // Callback is not frozen, we can updated the mutable list
    .doOnBeforeFinally { isFinished = true } // Callback is not frozen, we can change the flag
    .subscribe()

Set isThreadLocal flag to true in subscribe operator:

val values = mutableListOf<Any>()
var isComplete = false

observable<Any> { emitter ->
    // Background job
}
    .subscribeOn(ioScheduler)
    .observeOn(mainScheduler)
    .subscribe(
        isThreadLocal = true,
        onNext = { values += it }, // Callback is not frozen, we can updated the mutable list
        onComplete = { isComplete = true } // Callback is not frozen, we can change the flag
    )

In both cases subscription (subscribe call) must be performed on the Main thread.

Samples: