forked from aqlaboratory/openfold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_pretrained_openfold.py
450 lines (380 loc) · 15.7 KB
/
run_pretrained_openfold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from datetime import date
import gc
import logging
import numpy as np
import os
import pickle
from pytorch_lightning.utilities.deepspeed import (
convert_zero_checkpoint_to_fp32_state_dict
)
import random
import sys
import time
import torch
from openfold.config import model_config
from openfold.data import templates, feature_pipeline, data_pipeline
from openfold.model.model import AlphaFold
from openfold.model.torchscript import script_preset_
from openfold.np import residue_constants, protein
import openfold.np.relax.relax as relax
from openfold.utils.import_weights import (
import_jax_weights_,
)
from openfold.utils.tensor_utils import (
tensor_tree_map,
)
from scripts.utils import add_data_args
logging.basicConfig()
logger = logging.getLogger(__file__)
logger.setLevel(level=logging.INFO)
def precompute_alignments(tags, seqs, alignment_dir, args):
for tag, seq in zip(tags, seqs):
tmp_fasta_path = os.path.join(args.output_dir, f"tmp_{os.getpid()}.fasta")
with open(tmp_fasta_path, "w") as fp:
fp.write(f">{tag}\n{seq}")
local_alignment_dir = os.path.join(alignment_dir, tag)
if(args.use_precomputed_alignments is None):
logger.info(f"Generating alignments for {tag}...")
if not os.path.exists(local_alignment_dir):
os.makedirs(local_alignment_dir)
alignment_runner = data_pipeline.AlignmentRunner(
jackhmmer_binary_path=args.jackhmmer_binary_path,
hhblits_binary_path=args.hhblits_binary_path,
hhsearch_binary_path=args.hhsearch_binary_path,
uniref90_database_path=args.uniref90_database_path,
mgnify_database_path=args.mgnify_database_path,
bfd_database_path=args.bfd_database_path,
uniclust30_database_path=args.uniclust30_database_path,
pdb70_database_path=args.pdb70_database_path,
no_cpus=args.cpus,
)
alignment_runner.run(
tmp_fasta_path, local_alignment_dir
)
# Remove temporary FASTA file
os.remove(tmp_fasta_path)
def run_model(model, batch, tag, args):
with torch.no_grad():
batch = {
k:torch.as_tensor(v, device=args.model_device)
for k,v in batch.items()
}
# Disable templates if there aren't any in the batch
model.config.template.enabled = model.config.template.enabled and any([
"template_" in k for k in batch
])
logger.info(f"Running inference for {tag}...")
t = time.perf_counter()
out = model(batch)
logger.info(f"Inference time: {time.perf_counter() - t}")
return out
def prep_output(out, batch, feature_dict, feature_processor, args):
plddt = out["plddt"]
mean_plddt = np.mean(plddt)
plddt_b_factors = np.repeat(
plddt[..., None], residue_constants.atom_type_num, axis=-1
)
# Prep protein metadata
template_domain_names = []
template_chain_index = None
if(feature_processor.config.common.use_templates and "template_domain_names" in feature_dict):
template_domain_names = [
t.decode("utf-8") for t in feature_dict["template_domain_names"]
]
# This works because templates are not shuffled during inference
template_domain_names = template_domain_names[
:feature_processor.config.predict.max_templates
]
if("template_chain_index" in feature_dict):
template_chain_index = feature_dict["template_chain_index"]
template_chain_index = template_chain_index[
:feature_processor.config.predict.max_templates
]
no_recycling = feature_processor.config.common.max_recycling_iters
remark = ', '.join([
f"no_recycling={no_recycling}",
f"max_templates={feature_processor.config.predict.max_templates}",
f"config_preset={args.config_preset}",
])
# For multi-chain FASTAs
ri = feature_dict["residue_index"]
chain_index = (ri - np.arange(ri.shape[0])) / args.multimer_ri_gap
chain_index = chain_index.astype(np.int64)
cur_chain = 0
prev_chain_max = 0
for i, c in enumerate(chain_index):
if(c != cur_chain):
cur_chain = c
prev_chain_max = i + cur_chain * args.multimer_ri_gap
batch["residue_index"][i] -= prev_chain_max
unrelaxed_protein = protein.from_prediction(
features=batch,
result=out,
b_factors=plddt_b_factors,
chain_index=chain_index,
remark=remark,
parents=template_domain_names,
parents_chain_index=template_chain_index,
)
return unrelaxed_protein
def main(args):
# Create the output directory
os.makedirs(args.output_dir, exist_ok=True)
# Prep the model
config = model_config(args.config_preset)
logger.info(f"Using config preset {args.config_preset}...")
model = AlphaFold(config)
model = model.eval()
if(args.jax_param_path):
import_jax_weights_(
model, args.jax_param_path, version=args.config_preset
)
logger.info(
f"Successfully loaded JAX parameters at {args.jax_param_path}..."
)
elif(args.openfold_checkpoint_path):
if(os.path.isdir(args.openfold_checkpoint_path)):
# A DeepSpeed checkpoint
checkpoint_basename = os.path.splitext(
os.path.basename(
os.path.normpath(args.openfold_checkpoint_path)
)
)[0]
ckpt_path = os.path.join(
args.output_dir,
checkpoint_basename + ".pt",
)
if(not os.path.isfile(ckpt_path)):
convert_zero_checkpoint_to_fp32_state_dict(
args.openfold_checkpoint_path,
ckpt_path,
)
d = torch.load(ckpt_path)
model.load_state_dict(d["ema"]["params"])
else:
# A checkpoint from the public release, which only contains EMA
# params
ckpt_path = args.openfold_checkpoint_path
d = torch.load(ckpt_path)
if("ema" in d):
# The public weights have had this done to them already
d = d["ema"]["params"]
model.load_state_dict(d)
logger.info(
f"Loaded OpenFold parameters at {args.openfold_checkpoint_path}..."
)
else:
raise ValueError(
"At least one of jax_param_path or openfold_checkpoint_path must "
"be specified."
)
model = model.to(args.model_device)
template_featurizer = templates.TemplateHitFeaturizer(
mmcif_dir=args.template_mmcif_dir,
max_template_date=args.max_template_date,
max_hits=config.data.predict.max_templates,
kalign_binary_path=args.kalign_binary_path,
release_dates_path=args.release_dates_path,
obsolete_pdbs_path=args.obsolete_pdbs_path
)
data_processor = data_pipeline.DataPipeline(
template_featurizer=template_featurizer,
)
output_dir_base = args.output_dir
random_seed = args.data_random_seed
if random_seed is None:
random_seed = random.randrange(sys.maxsize)
feature_processor = feature_pipeline.FeaturePipeline(config.data)
if not os.path.exists(output_dir_base):
os.makedirs(output_dir_base)
if(args.use_precomputed_alignments is None):
alignment_dir = os.path.join(output_dir_base, "alignments")
else:
alignment_dir = args.use_precomputed_alignments
logger.info(f"Using precomputed alignments at {alignment_dir}...")
prediction_dir = os.path.join(args.output_dir, "predictions")
os.makedirs(prediction_dir, exist_ok=True)
for fasta_file in os.listdir(args.fasta_dir):
# Gather input sequences
with open(os.path.join(args.fasta_dir, fasta_file), "r") as fp:
data = fp.read()
lines = [
l.replace('\n', '')
for prot in data.split('>') for l in prot.strip().split('\n', 1)
][1:]
tags, seqs = lines[::2], lines[1::2]
tags = [t.split()[0] for t in tags]
# assert len(tags) == len(set(tags)), "All FASTA tags must be unique"
tag = '-'.join(tags)
output_name = f'{tag}_{args.config_preset}'
if(args.output_postfix is not None):
output_name = f'{output_name}_{args.output_postfix}'
# Save the unrelaxed PDB.
unrelaxed_output_path = os.path.join(
prediction_dir, f'{output_name}_unrelaxed.pdb'
)
if(os.path.exists(unrelaxed_output_path)):
continue
precompute_alignments(tags, seqs, alignment_dir, args)
tmp_fasta_path = os.path.join(args.output_dir, f"tmp_{os.getpid()}.fasta")
if(len(seqs) == 1):
seq = seqs[0]
with open(tmp_fasta_path, "w") as fp:
fp.write(f">{tag}\n{seq}")
local_alignment_dir = os.path.join(alignment_dir, tag)
feature_dict = data_processor.process_fasta(
fasta_path=tmp_fasta_path, alignment_dir=local_alignment_dir
)
else:
with open(tmp_fasta_path, "w") as fp:
fp.write(
'\n'.join([f">{tag}\n{seq}" for tag, seq in zip(tags, seqs)])
)
feature_dict = data_processor.process_multiseq_fasta(
fasta_path=tmp_fasta_path, super_alignment_dir=alignment_dir,
)
# Remove temporary FASTA file
os.remove(tmp_fasta_path)
processed_feature_dict = feature_processor.process_features(
feature_dict, mode='predict',
)
batch = processed_feature_dict
out = run_model(model, batch, tag, args)
# Toss out the recycling dimensions --- we don't need them anymore
batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
out = tensor_tree_map(lambda x: np.array(x.cpu()), out)
unrelaxed_protein = prep_output(
out, batch, feature_dict, feature_processor, args
)
output_name = f'{tag}_{args.config_preset}'
if(args.output_postfix is not None):
output_name = f'{output_name}_{args.output_postfix}'
# Save the unrelaxed PDB.
unrelaxed_output_path = os.path.join(
prediction_dir, f'{output_name}_unrelaxed.pdb'
)
with open(unrelaxed_output_path, 'w') as fp:
fp.write(protein.to_pdb(unrelaxed_protein))
logger.info(f"Output written to {unrelaxed_output_path}...")
if(not args.skip_relaxation):
amber_relaxer = relax.AmberRelaxation(
use_gpu=(args.model_device != "cpu"),
**config.relax,
)
# Relax the prediction.
logger.info(f"Running relaxation on {unrelaxed_output_path}...")
t = time.perf_counter()
visible_devices = os.getenv("CUDA_VISIBLE_DEVICES", default="")
if("cuda" in args.model_device):
device_no = args.model_device.split(":")[-1]
os.environ["CUDA_VISIBLE_DEVICES"] = device_no
relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
os.environ["CUDA_VISIBLE_DEVICES"] = visible_devices
logger.info(f"Relaxation time: {time.perf_counter() - t}")
# Save the relaxed PDB.
relaxed_output_path = os.path.join(
prediction_dir, f'{output_name}_relaxed.pdb'
)
with open(relaxed_output_path, 'w') as fp:
fp.write(relaxed_pdb_str)
logger.info(f"Relaxed output written to {relaxed_output_path}...")
if(args.save_outputs):
output_dict_path = os.path.join(
args.output_dir, f'{output_name}_output_dict.pkl'
)
with open(output_dict_path, "wb") as fp:
pickle.dump(out, fp, protocol=pickle.HIGHEST_PROTOCOL)
logger.info(f"Model output written to {output_dict_path}...")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"fasta_dir", type=str,
help="Path to directory containing FASTA files, one sequence per file"
)
parser.add_argument(
"template_mmcif_dir", type=str,
)
parser.add_argument(
"--use_precomputed_alignments", type=str, default=None,
help="""Path to alignment directory. If provided, alignment computation
is skipped and database path arguments are ignored."""
)
parser.add_argument(
"--output_dir", type=str, default=os.getcwd(),
help="""Name of the directory in which to output the prediction""",
)
parser.add_argument(
"--model_device", type=str, default="cpu",
help="""Name of the device on which to run the model. Any valid torch
device name is accepted (e.g. "cpu", "cuda:0")"""
)
parser.add_argument(
"--config_preset", type=str, default="model_1",
help="""Name of a model config. Choose one of model_{1-5} or
model_{1-5}_ptm, as defined on the AlphaFold GitHub."""
)
parser.add_argument(
"--jax_param_path", type=str, default=None,
help="""Path to JAX model parameters. If None, and openfold_checkpoint_path
is also None, parameters are selected automatically according to
the model name from openfold/resources/params"""
)
parser.add_argument(
"--openfold_checkpoint_path", type=str, default=None,
help="""Path to OpenFold checkpoint. Can be either a DeepSpeed
checkpoint directory or a .pt file"""
)
parser.add_argument(
"--save_outputs", action="store_true", default=False,
help="Whether to save all model outputs, including embeddings, etc."
)
parser.add_argument(
"--cpus", type=int, default=4,
help="""Number of CPUs with which to run alignment tools"""
)
parser.add_argument(
"--preset", type=str, default='full_dbs',
choices=('reduced_dbs', 'full_dbs')
)
parser.add_argument(
"--output_postfix", type=str, default=None,
help="""Postfix for output prediction filenames"""
)
parser.add_argument(
"--data_random_seed", type=str, default=None
)
parser.add_argument(
"--skip_relaxation", action="store_true", default=False,
)
parser.add_argument(
"--multimer_ri_gap", type=int, default=200,
help="""Residue index offset between multiple sequences, if provided"""
)
add_data_args(parser)
args = parser.parse_args()
if(args.jax_param_path is None and args.openfold_checkpoint_path is None):
args.jax_param_path = os.path.join(
"openfold", "resources", "params",
"params_" + args.config_preset + ".npz"
)
if(args.model_device == "cpu" and torch.cuda.is_available()):
logging.warning(
"""The model is being run on CPU. Consider specifying
--model_device for better performance"""
)
main(args)