-
Notifications
You must be signed in to change notification settings - Fork 0
/
lambda_function.py
48 lines (38 loc) · 1.56 KB
/
lambda_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import awswrangler as wr
import pandas as pd
import urllib.parse
import os
# Temporary hard-coded AWS Settings; i.e. to be set as OS variable in Lambda
os_input_s3_cleansed_layer = os.environ['s3_cleansed_layer']
os_input_glue_catalog_db_name = os.environ['glue_catalog_db_name']
os_input_glue_catalog_table_name = os.environ['glue_catalog_table_name']
os_input_write_data_operation = os.environ['write_data_operation']
def lambda_handler(event, context):
# Get the object from the event and show its content type
bucket = event['Records'][0]['s3']['bucket']['name']
key = urllib.parse.unquote_plus(event['Records'][0]['s3']['object']['key'], encoding='utf-8')
try:
# Creating DF from content
df_raw = wr.s3.read_json('s3://{}/{}'.format(bucket, key))
# Extract required columns:
df_step_1 = pd.json_normalize(df_raw['items'])
#create db
databases = wr.catalog.databases()
if os_input_glue_catalog_db_name not in databases.values:
wr.catalog.create_database(os_input_glue_catalog_db_name)
else:
print("Database already exists")
# Write to S3
wr_response = wr.s3.to_parquet(
df=df_step_1,
path=os_input_s3_cleansed_layer,
dataset=True,
database=os_input_glue_catalog_db_name,
table=os_input_glue_catalog_table_name,
mode=os_input_write_data_operation
)
return wr_response
except Exception as e:
print(e)
print('Error getting object {} from bucket {}. Make sure they exist and your bucket is in the same region as this function.'.format(key, bucket))
raise e