From f1412caad568b0f2113ced0a5b67e63b1aa1d37a Mon Sep 17 00:00:00 2001 From: Tianlei Wu Date: Sat, 17 Feb 2024 00:04:17 +0000 Subject: [PATCH 1/2] Add use_tf32 cuda provider option --- .../CUDA-ExecutionProvider.md | 18 +++++++++++++++++- 1 file changed, 17 insertions(+), 1 deletion(-) diff --git a/docs/execution-providers/CUDA-ExecutionProvider.md b/docs/execution-providers/CUDA-ExecutionProvider.md index 4b89ca80ca70c..d887de2079e16 100644 --- a/docs/execution-providers/CUDA-ExecutionProvider.md +++ b/docs/execution-providers/CUDA-ExecutionProvider.md @@ -159,12 +159,28 @@ Default value: 0 ### enable_skip_layer_norm_strict_mode -Whether to use strict mode in SkipLayerNormalization cuda implementation. The default and recommanded setting is false. +Whether to use strict mode in SkipLayerNormalization cuda implementation. The default and recommended setting is false. If enabled, accuracy improvement and performance drop can be expected. This flag is only supported from the V2 version of the provider options struct when used using the C API. (sample below) Default value: 0 +### use_tf32 + +TF32 is a math mode available on NVIDIA GPUs since Ampere. It allows certain float32 matrix multiplications and convolutions to run much faster on tensor cores with [TensorFloat-32](https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/) reduced precision: float32 inputs are rounded with 10 bits of mantissa and results are accumulated with float32 precision. + +Default value: 1 + +TensorFloat-32 is enabled by default. Starting from ONNX Runtime 1.18, you can use this flag to disable it for an inference session. + +Example python usage: + +```python +providers = [("CUDAExecutionProvider", {"use_tf32": 0})] +sess_options = ort.SessionOptions() +sess = ort.InferenceSession("my_model.onnx", sess_options=sess_options, providers=providers) +``` + ### gpu_external_[alloc|free|empty_cache] gpu_external_* is used to pass external allocators. From c3c7f7f7075d679f0af4825d3c8125e9b6caaf41 Mon Sep 17 00:00:00 2001 From: Tianlei Wu Date: Sat, 17 Feb 2024 00:24:13 +0000 Subject: [PATCH 2/2] comment c api --- docs/execution-providers/CUDA-ExecutionProvider.md | 3 +++ 1 file changed, 3 insertions(+) diff --git a/docs/execution-providers/CUDA-ExecutionProvider.md b/docs/execution-providers/CUDA-ExecutionProvider.md index d887de2079e16..774d97cb819a6 100644 --- a/docs/execution-providers/CUDA-ExecutionProvider.md +++ b/docs/execution-providers/CUDA-ExecutionProvider.md @@ -181,6 +181,8 @@ sess_options = ort.SessionOptions() sess = ort.InferenceSession("my_model.onnx", sess_options=sess_options, providers=providers) ``` +This flag is only supported from the V2 version of the provider options struct when used using the C API. (sample below) + ### gpu_external_[alloc|free|empty_cache] gpu_external_* is used to pass external allocators. @@ -203,6 +205,7 @@ with `onnxruntime_USE_CUDA_NHWC_OPS=ON`. If this is enabled the EP prefers NHWC operators over NCHW. Needed transforms will be added to the model. As NVIDIA tensor cores can only work on NHWC layout this can increase performance if the model consists of many supported operators and does not need too many new transpose nodes. Wider operator support is planned in the future. + This flag is only supported from the V2 version of the provider options struct when used using the C API. The V2 provider options struct can be created using [CreateCUDAProviderOptions](https://onnxruntime.ai/docs/api/c/struct_ort_api.html#a0d29cbf555aa806c050748cf8d2dc172)