diff --git a/docs/OperatorKernels.md b/docs/OperatorKernels.md index 16df788c284ee..edf249a816923 100644 --- a/docs/OperatorKernels.md +++ b/docs/OperatorKernels.md @@ -373,7 +373,7 @@ Do not modify directly.* |||[13, 17]|**T** = tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)| |||[11, 12]|**T** = tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)| |||[2, 10]|**T** = tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)| -|SplitToSequence|*in* input:**T**
*in* split:**I**
*out* output_sequence:**S**|11+|**I** = tensor(int32), tensor(int64)
**S** = seq(tensor(bfloat16)), seq(tensor(bool)), seq(tensor(double)), seq(tensor(float)), seq(tensor(float16)), seq(tensor(int16)), seq(tensor(int32)), seq(tensor(int64)), seq(tensor(int8)), seq(tensor(string)), seq(tensor(uint16)), seq(tensor(uint32)), seq(tensor(uint64)), seq(tensor(uint8))
**T** = tensor(double), tensor(float), tensor(int32), tensor(int64), tensor(string)| +|SplitToSequence|*in* input:**T**
*in* split:**I**
*out* output_sequence:**S**|11+|**I** = tensor(int32), tensor(int64)
**S** = seq(tensor(bfloat16)), seq(tensor(bool)), seq(tensor(double)), seq(tensor(float)), seq(tensor(float16)), seq(tensor(int16)), seq(tensor(int32)), seq(tensor(int64)), seq(tensor(int8)), seq(tensor(string)), seq(tensor(uint16)), seq(tensor(uint32)), seq(tensor(uint64)), seq(tensor(uint8))
**T** = tensor(double), tensor(float), tensor(float16), tensor(int32), tensor(int64), tensor(string)| |Sqrt|*in* X:**T**
*out* Y:**T**|13+|**T** = tensor(double), tensor(float)| |||[6, 12]|**T** = tensor(double), tensor(float)| |Squeeze|*in* data:**T**
*in* axes:**tensor(int64)**
*out* squeezed:**T**

or

*in* data:**T**
*out* squeezed:**T**|13+|**T** = tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)| diff --git a/onnxruntime/core/providers/cpu/sequence/sequence_ops.cc b/onnxruntime/core/providers/cpu/sequence/sequence_ops.cc index 4759938cd8250..8064bc0a58cb1 100644 --- a/onnxruntime/core/providers/cpu/sequence/sequence_ops.cc +++ b/onnxruntime/core/providers/cpu/sequence/sequence_ops.cc @@ -334,27 +334,14 @@ Status SequenceConstruct::Compute(OpKernelContext* context) const { // SplitToSequence -namespace op_kernel_type_control { -ORT_SPECIFY_OP_KERNEL_ARG_DEFAULT_TYPES_ALL_OPSETS( - kCpuExecutionProvider, kOnnxDomain, SplitToSequence, Input, 0, - float, double, int32_t, int64_t, std::string); -} // namespace op_kernel_type_control - -namespace { -using EnabledSplitToSequenceDataTypes = ORT_OP_KERNEL_ARG_ENABLED_TYPE_LIST_ALL_OPSETS( - kCpuExecutionProvider, kOnnxDomain, SplitToSequence, Input, 0); -} // namespace - ONNX_CPU_OPERATOR_KERNEL( SplitToSequence, 11, KernelDefBuilder() .TypeConstraint("T", - BuildKernelDefConstraintsFromTypeList()) + BuildKernelDefConstraints()) .TypeConstraint("S", DataTypeImpl::AllSequenceTensorTypes()) - .TypeConstraint("I", std::vector{ - DataTypeImpl::GetTensorType(), - DataTypeImpl::GetTensorType()}), + .TypeConstraint("I", BuildKernelDefConstraints()), SplitToSequence); SplitToSequence::SplitToSequence(const OpKernelInfo& info) : OpKernel(info) { @@ -366,29 +353,14 @@ Status SplitToSequence::Compute(OpKernelContext* context) const { const Tensor& input = *context->Input(0); const Tensor* p_split_input = context->Input(1); - Status status; - - if (input.IsDataType()) - status = ComputeImpl(*context, input, p_split_input); - else if (input.IsDataType()) - status = ComputeImpl(*context, input, p_split_input); - else if (input.IsDataType()) - status = ComputeImpl(*context, input, p_split_input); - else if (input.IsDataType()) - status = ComputeImpl(*context, input, p_split_input); - else if (input.IsDataTypeString()) - status = ComputeImpl(*context, input, p_split_input); - else - status = ORT_MAKE_STATUS(ONNXRUNTIME, FAIL, "SplitToSequence operator does not support ", input.DataType(), " yet"); - - return status; + return ComputeImpl(*context, input, p_split_input); } Status SplitToSequence::PrepareForCompute(const TensorShape& input_shape, int64_t split_scalar, bool is_split_input_scalar, int64_t& num_outputs, int64_t& axis, int& before_dims, int& after_dims_including_split_axis, int& after_dims_excluding_split, bool& is_uneven_split, int& num_remaining_splits, - std::vector& split_sizes) const { + InlinedVector& split_sizes) const { auto input_dims = input_shape.GetDims(); const auto num_dimensions = gsl::narrow_cast(input_shape.NumDimensions()); axis = HandleNegativeAxis(axis_, num_dimensions); // handle negative and enforce axis is valid @@ -416,7 +388,7 @@ Status SplitToSequence::PrepareForCompute(const TensorShape& input_shape, int64_ // populate split_sizes with the same size for each output num_outputs = split_dim_size; // https://github.com/onnx/onnx/issues/2396 - split_sizes = std::vector(static_cast(num_outputs), DEFAULT_LENGTH_EACH_OUTPUT_); + split_sizes = InlinedVector(static_cast(num_outputs), DEFAULT_LENGTH_EACH_OUTPUT_); } else { auto split_size_sum = std::accumulate(split_sizes.cbegin(), split_sizes.cend(), 0LL); if (split_size_sum != split_dim_size) { @@ -453,7 +425,7 @@ static int64_t GetScalarSplitInput(const Tensor& tensor) { return retval; } -static void GetSplitSizesInput(const Tensor& tensor, std::vector& split_sizes) { +static void GetSplitSizesInput(const Tensor& tensor, InlinedVector& split_sizes) { auto num_elems = tensor.Shape().Size(); split_sizes.reserve(onnxruntime::narrow(num_elems)); if (tensor.IsDataType()) { @@ -467,13 +439,8 @@ static void GetSplitSizesInput(const Tensor& tensor, std::vector& split } } -template Status SplitToSequence::ComputeImpl(OpKernelContext& context, const Tensor& input, const Tensor* p_split_input) const { - if (!utils::HasType()) { - return ORT_MAKE_STATUS(ONNXRUNTIME, FAIL, "Data type is not supported in this build."); - } - auto& input_shape = input.Shape(); int64_t num_outputs = 0; int64_t axis = axis_; @@ -484,7 +451,9 @@ Status SplitToSequence::ComputeImpl(OpKernelContext& context, const Tensor& inpu bool is_split_input_scalar = false; bool is_uneven_split = false; int num_remaining_splits = 0; - std::vector split_sizes; + InlinedVector split_sizes; + const bool is_string_type = input.IsDataTypeString(); + const size_t element_size = (is_string_type) ? 0U : input.DataType()->Size(); // figure out split_scalar or split_sizes if (p_split_input) { @@ -520,8 +489,8 @@ Status SplitToSequence::ComputeImpl(OpKernelContext& context, const Tensor& inpu // copy dimensions so we can update the selected axis in place auto output_dimensions = input_shape.AsShapeVector(); - int64_t input_offset = 0; - const T* input_data = input.Data(); + SafeInt input_offset = 0; + const void* input_data = input.DataRaw(); for (int i = 0; i < num_outputs; ++i) { // update size of dimension for axis we're splitting on while considering uneven split int split_size; @@ -535,20 +504,50 @@ Status SplitToSequence::ComputeImpl(OpKernelContext& context, const Tensor& inpu AllocatorPtr alloc; ORT_RETURN_IF_ERROR(context.GetTempSpaceAllocator(&alloc)); Tensor output_tensor(input.DataType(), onnxruntime::TensorShape(output_dimensions), alloc); - T* output_data = output_tensor.MutableData(); - - ::onnxruntime::math::CopyMatrix( - before_dims, // M - split_size * after_dims_excluding_split, // N - static_cast(input_data + input_offset), // A - after_dims_including_split_axis, // lda - static_cast(output_data), // B - split_size * after_dims_excluding_split, // ldb - [](const T* src, T* dst, size_t count) { - copy_data(src, dst, count); - }); - - input_offset += static_cast(split_size) * after_dims_excluding_split; // offset by the N data we used in this iteration + void* output_data = output_tensor.MutableDataRaw(); + + const auto M = before_dims; + const auto* A = static_cast(input_data) + static_cast(input_offset * element_size); + const auto lda = after_dims_including_split_axis; + auto* B = output_data; + + const auto N = split_size * after_dims_excluding_split; + const auto ldb = N; + + if (is_string_type) { + const auto* src = reinterpret_cast(A); + auto* dst = reinterpret_cast(B); + if (lda == N) { + copy_data(src, dst, static_cast(M * N)); + } else { + size_t lda_offset = 0; + size_t ldb_offset = 0; + for (size_t idx = 0; idx < static_cast(M); ++idx, + lda_offset += lda, ldb_offset += ldb) { + copy_data(src + lda_offset, dst + ldb_offset, static_cast(N)); + } + } + } else { + if (lda == N) { + // if the data is contiguous, we can just copy the data + const size_t bytes_to_copy = static_cast(N) * static_cast(M) * element_size; + memcpy(B, A, bytes_to_copy); + } else { + // otherwise we need to copy each row + const size_t row_bytes = SafeInt(N) * element_size; + const auto lda_bytes_inc = SafeInt(lda) * element_size; + const auto ldb_bytes_inc = SafeInt(ldb) * element_size; + SafeInt lda_bytes_offset = 0; + SafeInt ldb_bytes_offset = 0; + for (size_t idx = 0; idx < static_cast(M); ++idx, + lda_bytes_offset += lda_bytes_inc, ldb_bytes_offset += ldb_bytes_inc) { + memcpy(reinterpret_cast(B) + static_cast(ldb_bytes_offset), + reinterpret_cast(A) + static_cast(lda_bytes_offset), row_bytes); + } + } + } + + input_offset += SafeInt(split_size) * after_dims_excluding_split; // offset by the N data we used in this iteration // if keep_dims = 0, reshape the tensor by dropping the dimension corresponding to 'axis' if (use_keep_dims && keepdims_ == 0) { diff --git a/onnxruntime/core/providers/cpu/sequence/sequence_ops.h b/onnxruntime/core/providers/cpu/sequence/sequence_ops.h index 9466d3f0fd108..ccca226fb07ee 100644 --- a/onnxruntime/core/providers/cpu/sequence/sequence_ops.h +++ b/onnxruntime/core/providers/cpu/sequence/sequence_ops.h @@ -60,13 +60,12 @@ class SplitToSequence final : public OpKernel { Status Compute(OpKernelContext* context) const override; private: - template Status ComputeImpl(OpKernelContext& context, const Tensor& input, const Tensor* p_split_input) const; Status PrepareForCompute(const TensorShape& input_shape, int64_t split_scalar, bool is_split_input_scalar, int64_t& num_outputs, int64_t& axis, int& before_dims, int& after_dims_including_split_axis, int& after_dims_excluding_split, bool& is_uneven_split, int& num_remaining_splits, - std::vector& split_sizes) const; + InlinedVector& split_sizes) const; int64_t axis_{}; int64_t keepdims_{1}; const int64_t DEFAULT_LENGTH_EACH_OUTPUT_ = 1; diff --git a/onnxruntime/test/providers/cpu/sequence/sequence_ops_test.cc b/onnxruntime/test/providers/cpu/sequence/sequence_ops_test.cc index d29aac81150c5..60e75811e4333 100644 --- a/onnxruntime/test/providers/cpu/sequence/sequence_ops_test.cc +++ b/onnxruntime/test/providers/cpu/sequence/sequence_ops_test.cc @@ -330,15 +330,26 @@ TEST(SequenceOpsTest, SequenceConstructPositive) { // SplitToSequence template -static std::vector GetConsequtiveVector(T start, int num) { +static std::vector GetConsecutiveVector(T start, size_t num) { std::vector inputv(num); std::iota(inputv.begin(), inputv.end(), start); return inputv; } +template <> +std::vector GetConsecutiveVector(MLFloat16 start, size_t num) { + std::vector inputv; + inputv.reserve(num); + float start_f = start.ToFloat(); + for (size_t i = 0; i < num; ++i) { + inputv.push_back(MLFloat16{start_f + static_cast(i)}); + } + return inputv; +} + TEST(SequenceOpsTest, SplitToSequence_DefaultAxis0EqualSplitFloat) { OpTester test("SplitToSequence", 11); - test.AddInput("input", {4, 2}, GetConsequtiveVector(1.f, 8)); + test.AddInput("input", {4, 2}, GetConsecutiveVector(1.f, 8)); test.AddInput("split", {1, 2}, {2, 2}); SeqTensors output; output.AddTensor({2, 2}, {1.f, 2.f, 3.f, 4.f}); @@ -347,9 +358,31 @@ TEST(SequenceOpsTest, SplitToSequence_DefaultAxis0EqualSplitFloat) { test.Run(); } +TEST(SequenceOpsTest, SplitToSequence_DefaultAxis0EqualSplitMLFloat16) { + OpTester test("SplitToSequence", 11); + test.AddInput("input", {4, 2}, GetConsecutiveVector(MLFloat16::One, 8)); + test.AddInput("split", {1, 2}, {2, 2}); + SeqTensors output; + + std::vector tensor_1; + const auto data_1 = {1.f, 2.f, 3.f, 4.f}; + for (auto f : data_1) + tensor_1.push_back(MLFloat16{f}); + + std::vector tensor_2; + const auto data_2 = {5.f, 6.f, 7.f, 8.f}; + for (auto f : data_2) + tensor_2.push_back(MLFloat16{f}); + + output.AddTensor({2, 2}, tensor_1); + output.AddTensor({2, 2}, tensor_2); + test.AddSeqOutput("S2", output); + test.Run(); +} + TEST(SequenceOpsTest, SplitToSequence_DefaultAxis0EqualSplitLong) { OpTester test("SplitToSequence", 11); - test.AddInput("input", {4, 2}, GetConsequtiveVector(1, 8)); + test.AddInput("input", {4, 2}, GetConsecutiveVector(1, 8)); test.AddInput("split", {1, 2}, {2, 2}); SeqTensors output; output.AddTensor({2, 2}, {1, 2, 3, 4}); @@ -360,7 +393,7 @@ TEST(SequenceOpsTest, SplitToSequence_DefaultAxis0EqualSplitLong) { TEST(SequenceOpsTest, SplitToSequence_DefaultAxis0EqualSplitFloatScalarSplit) { OpTester test("SplitToSequence", 11); - test.AddInput("input", {4, 2}, GetConsequtiveVector(1.f, 8)); + test.AddInput("input", {4, 2}, GetConsecutiveVector(1.f, 8)); test.AddInput("split", {}, {2}); SeqTensors output; output.AddTensor({2, 2}, {1.f, 2.f, 3.f, 4.f}); @@ -371,7 +404,7 @@ TEST(SequenceOpsTest, SplitToSequence_DefaultAxis0EqualSplitFloatScalarSplit) { TEST(SequenceOpsTest, SplitToSequence_Axis0DefaultSplitFloatSetAxisExplicitly) { OpTester test("SplitToSequence", 11); - test.AddInput("input", {4, 2}, GetConsequtiveVector(1.f, 8)); + test.AddInput("input", {4, 2}, GetConsecutiveVector(1.f, 8)); int64_t axis = 0; test.AddAttribute("axis", axis); SeqTensors output; @@ -385,7 +418,7 @@ TEST(SequenceOpsTest, SplitToSequence_Axis0DefaultSplitFloatSetAxisExplicitly) { TEST(SequenceOpsTest, SplitToSequence_PositiveAxisScalarSplit) { OpTester test("SplitToSequence", 11); - test.AddInput("input", {2, 2, 6}, GetConsequtiveVector(1.f, 2 * 2 * 6)); + test.AddInput("input", {2, 2, 6}, GetConsecutiveVector(1.f, 2 * 2 * 6)); int64_t axis = 2; test.AddAttribute("axis", axis); test.AddInput("split", {}, {2}); @@ -411,11 +444,11 @@ TEST(SequenceOpsTest, SplitToSequence_PositiveAxisScalarSplit) { TEST(SequenceOpsTest, SplitToSequence_DefaultAxis0UnevenSplitFloat) { OpTester test("SplitToSequence", 11); - test.AddInput("input", {5, 2}, GetConsequtiveVector(1.f, 10)); + test.AddInput("input", {5, 2}, GetConsecutiveVector(1.f, 10)); test.AddInput("split", {}, {2}); SeqTensors output; - output.AddTensor({2, 2}, GetConsequtiveVector(1.f, 4)); - output.AddTensor({2, 2}, GetConsequtiveVector(5.f, 4)); + output.AddTensor({2, 2}, GetConsecutiveVector(1.f, 4)); + output.AddTensor({2, 2}, GetConsecutiveVector(5.f, 4)); output.AddTensor({1, 2}, {9.f, 10.f}); test.AddSeqOutput("S2", output); test.Run(); @@ -423,22 +456,22 @@ TEST(SequenceOpsTest, SplitToSequence_DefaultAxis0UnevenSplitFloat) { TEST(SequenceOpsTest, SplitToSequence_DefaultAxis0UnevenSplitFloat2) { OpTester test("SplitToSequence", 11); - test.AddInput("input", {17, 2}, GetConsequtiveVector(1.f, 34)); + test.AddInput("input", {17, 2}, GetConsecutiveVector(1.f, 34)); test.AddInput("split", {}, {3}); SeqTensors output; - output.AddTensor({3, 2}, GetConsequtiveVector(1.f, 6)); - output.AddTensor({3, 2}, GetConsequtiveVector(7.f, 6)); - output.AddTensor({3, 2}, GetConsequtiveVector(13.f, 6)); - output.AddTensor({3, 2}, GetConsequtiveVector(19.f, 6)); - output.AddTensor({3, 2}, GetConsequtiveVector(25.f, 6)); - output.AddTensor({2, 2}, GetConsequtiveVector(31.f, 4)); + output.AddTensor({3, 2}, GetConsecutiveVector(1.f, 6)); + output.AddTensor({3, 2}, GetConsecutiveVector(7.f, 6)); + output.AddTensor({3, 2}, GetConsecutiveVector(13.f, 6)); + output.AddTensor({3, 2}, GetConsecutiveVector(19.f, 6)); + output.AddTensor({3, 2}, GetConsecutiveVector(25.f, 6)); + output.AddTensor({2, 2}, GetConsecutiveVector(31.f, 4)); test.AddSeqOutput("S2", output); test.Run(); } TEST(SequenceOpsTest, SplitToSequence_PositiveAxisUnevenSplit) { OpTester test("SplitToSequence", 11); - test.AddInput("input", {2, 5}, GetConsequtiveVector(1.f, 10)); + test.AddInput("input", {2, 5}, GetConsecutiveVector(1.f, 10)); test.AddInput("split", {}, {2}); int64_t axis = 1; test.AddAttribute("axis", axis); @@ -452,33 +485,33 @@ TEST(SequenceOpsTest, SplitToSequence_PositiveAxisUnevenSplit) { TEST(SequenceOpsTest, SplitToSequence_Axis0DefaultSplitFloatSetAxisExplicitlyDontKeepDims3Dim) { OpTester test("SplitToSequence", 11); - test.AddInput("input", {2, 3, 4}, GetConsequtiveVector(1.f, 2 * 3 * 4)); + test.AddInput("input", {2, 3, 4}, GetConsecutiveVector(1.f, 2 * 3 * 4)); test.AddAttribute("keepdims", 0); int64_t axis = 0; test.AddAttribute("axis", axis); SeqTensors output; - output.AddTensor({3, 4}, GetConsequtiveVector(1.f, 12)); - output.AddTensor({3, 4}, GetConsequtiveVector(13.f, 12)); + output.AddTensor({3, 4}, GetConsecutiveVector(1.f, 12)); + output.AddTensor({3, 4}, GetConsecutiveVector(13.f, 12)); test.AddSeqOutput("S2", output); test.Run(); } TEST(SequenceOpsTest, SplitToSequence_Axis0DefaultSplitFloatSetAxisExplicitlyDontKeepDims2Dim) { OpTester test("SplitToSequence", 11); - test.AddInput("input", {2, 3}, GetConsequtiveVector(1.f, 2 * 3)); + test.AddInput("input", {2, 3}, GetConsecutiveVector(1.f, 2 * 3)); test.AddAttribute("keepdims", 0); int64_t axis = 0; test.AddAttribute("axis", axis); SeqTensors output; - output.AddTensor({3}, GetConsequtiveVector(1.f, 3)); - output.AddTensor({3}, GetConsequtiveVector(4.f, 3)); + output.AddTensor({3}, GetConsecutiveVector(1.f, 3)); + output.AddTensor({3}, GetConsecutiveVector(4.f, 3)); test.AddSeqOutput("S2", output); test.Run(); } TEST(SequenceOpsTest, SplitToSequence_PositiveAxisDontKeepDims) { OpTester test("SplitToSequence", 11); - test.AddInput("input", {2, 3, 4}, GetConsequtiveVector(1.f, 2 * 3 * 4)); + test.AddInput("input", {2, 3, 4}, GetConsecutiveVector(1.f, 2 * 3 * 4)); test.AddAttribute("keepdims", 0); int64_t axis = 2; test.AddAttribute("axis", axis);