From ef0b71308c0e2395d3ea63e627515ff8e624ad45 Mon Sep 17 00:00:00 2001 From: Sheil Kumar Date: Fri, 16 Feb 2024 05:34:55 -0800 Subject: [PATCH] Optimize KahnsTopologicalSort and PriorityNodeCompare (#19475) **Description** 1) During SessionInitialization, KahnsTopologicalSort is a major cause of perf degradation. The main cause of slow down is that the TopologicalSort needs to keep track of nodes to visit in order, and reorder them based on priority (as informed by a comparator). The existing implementation uses a priority_queue that is backed by a std::vector container. However, vectors are not good for insertion and reordering. The appropriate data type for this operation is a linked list. However, linked lists like std::list are not usable as a container for std::priority_queue. This is because std::priority_queue requires random access, which linked lists do not have. However, for this simple implementation, we can leverage a std::list under the hood and perform insertions manually using std::upper_bound. This drastically reduces the time taken by the method, which currently instead causes numerous recopies and a lot of movement inside the graph nodes to visit list. 2) In the comparator, I hide forward and backward attribute checking behind the #ifdef ENABLE_TRAINING macro, as I believe it should only be valid in the training scenario. 3) In noopelimination transformer, I prevent the creation of Initializer (which unpacks tensorproto data) in every node and only create initializers when Add/Sub/Mul/Div op nodes are detected. **Motivation and Context** Session creation time of many models is quite slow. --------- Co-authored-by: Sheil Kumar --- onnxruntime/core/graph/graph.cc | 37 ++++++++-- onnxruntime/core/graph/graph_viewer.cc | 18 +++-- .../core/optimizer/noop_elimination.cc | 73 +++++++++++-------- .../ort_optimizer_api_impl.cc | 2 +- 4 files changed, 85 insertions(+), 45 deletions(-) diff --git a/onnxruntime/core/graph/graph.cc b/onnxruntime/core/graph/graph.cc index 902839bee04ba..305122c56b865 100644 --- a/onnxruntime/core/graph/graph.cc +++ b/onnxruntime/core/graph/graph.cc @@ -1818,16 +1818,36 @@ void Graph::ReverseDFSFrom(gsl::span from, } } +template +struct VisitorPriorityQueue { + using ComparatorType = std::function; + std::list list_; + const ComparatorType comparator_ = nullptr; + VisitorPriorityQueue(const ComparatorType& comp) : comparator_(comp) {} + + void push(T node) { + list_.insert( + std::upper_bound(list_.begin(), list_.end(), node, comparator_), + node); + } + bool empty() { return list_.empty(); } + T top() { return list_.back(); } + void pop() { list_.pop_back(); } +}; + #if !defined(ORT_MINIMAL_BUILD) void Graph::KahnsTopologicalSort(const std::function& enter, const std::function& comp) const { - std::unordered_map in_degree; - std::priority_queue, decltype(comp)> to_visit(comp); - std::vector topo_order; + InlinedVector in_degree(MaxNodeIndex(), 0); + InlinedVector topo_order; + VisitorPriorityQueue to_visit(comp); + + auto number_of_nodes = NumberOfNodes(); + topo_order.reserve(number_of_nodes); for (auto& node : Nodes()) { size_t input_edge_count = node.GetInputEdgesCount(); - in_degree.insert({node.Index(), input_edge_count}); + in_degree[node.Index()] = input_edge_count; if (input_edge_count == 0) { to_visit.push(&node); } @@ -1844,16 +1864,17 @@ void Graph::KahnsTopologicalSort(const std::function& enter, } for (auto node_it = current->OutputNodesBegin(); node_it != current->OutputNodesEnd(); ++node_it) { - in_degree[node_it->Index()]--; + auto& node_in_degree = in_degree[node_it->Index()]; + node_in_degree--; - if (in_degree[node_it->Index()] == 0) { + if (node_in_degree == 0) { to_visit.push(&*node_it); } } topo_order.push_back(current->Index()); } - if (NumberOfNodes() != static_cast(topo_order.size())) { + if (number_of_nodes != static_cast(topo_order.size())) { ORT_THROW("Some nodes are not included in the topological sort, graph have a cycle."); } } @@ -2843,7 +2864,7 @@ void Graph::AddInitializedTensor(const TensorProto& tensor) { const gsl::not_null tensor_added{graph_proto_->add_initializer()}; *(tensor_added) = tensor; - name_to_initial_tensor_[tensor.name()] = tensor_added; + name_to_initial_tensor_.emplace(tensor.name(), tensor_added); SetGraphResolveNeeded(); if (!is_loaded_from_model_file_ && GetNodeArg(tensor.name()) == nullptr) { // make sure there is a NodeArg for the initializer as SetGraphInputsOutputs may add it to the graph inputs. diff --git a/onnxruntime/core/graph/graph_viewer.cc b/onnxruntime/core/graph/graph_viewer.cc index acf7b3a16541f..119d420066a84 100644 --- a/onnxruntime/core/graph/graph_viewer.cc +++ b/onnxruntime/core/graph/graph_viewer.cc @@ -14,8 +14,8 @@ bool NodeCompare::operator()(const Node* n1, const Node* n2) const { struct PriorityNodeCompare { inline bool IsHighPri(const Node* n) const { // local statics so we can compare std::strings in the checks - static const std::string shape_op("Shape"); - static const std::string size_op("Size"); + static constexpr std::string_view shape_op("Shape"); + static constexpr std::string_view size_op("Size"); const auto& op_type = n->OpType(); return op_type == shape_op || op_type == size_op; @@ -26,15 +26,20 @@ struct PriorityNodeCompare { // If return true, n2 will be output first bool operator()(const Node* n1, const Node* n2) const { // nodes in global high priority list will be output first - if (IsHighPri(n1) != IsHighPri(n2)) { - return IsHighPri(n2); + const bool isN1HighPri = IsHighPri(n1); + const bool isN2HighPri = IsHighPri(n2); + if (isN1HighPri != isN2HighPri) { + return isN2HighPri; } // nodes with lower priority value will be output first - if (n1->Priority() != n2->Priority()) { - return n1->Priority() > n2->Priority(); + const auto n1_priority = n1->Priority(); + const auto n2_priority = n2->Priority(); + if (n1_priority != n2_priority) { + return n1_priority > n2_priority; } +#ifdef ENABLE_TRAINING // nodes of forward pass will be output first auto n1_attrs = n1->GetAttributes(); auto n2_attrs = n2->GetAttributes(); @@ -45,6 +50,7 @@ struct PriorityNodeCompare { if (n1_is_forward != n2_is_forward) { return n2_is_forward > n1_is_forward; } +#endif // otherwise, nodes with lower index will be output first return n1->Index() > n2->Index(); diff --git a/onnxruntime/core/optimizer/noop_elimination.cc b/onnxruntime/core/optimizer/noop_elimination.cc index b3c2991d54b28..bba39b698a27a 100644 --- a/onnxruntime/core/optimizer/noop_elimination.cc +++ b/onnxruntime/core/optimizer/noop_elimination.cc @@ -42,49 +42,62 @@ bool NoopElimination::SatisfyCondition(const Graph& graph, const Node& node, con // if initializer_rank is bigger, the output is expected to be initializer_rank per broadcasting rule, // but it won't happen if the case is accepted, thus reject it - auto initializer_rank = initializer->dims().size(); + const auto& dims = initializer->dims(); + auto initializer_rank = dims.size(); const auto* other_input_shape = node.InputDefs()[input0_is_initializer ? 1 : 0]->Shape(); if (other_input_shape == nullptr || initializer_rank > other_input_shape->dim_size()) { return false; } - int32_t data_type = initializer->data_type(); - Initializer add_init(*initializer, graph.ModelPath()); - if (add_init.size() > 1) { + int64_t tensor_size = 1; + for (auto i : dims) { + tensor_size *= i; + } + + if (tensor_size > 1) { return false; } + // handle edge case where the total size of the initializer is 0 - if (add_init.size() == 0) { + if (tensor_size == 0) { return true; } - float value = 0.0f; - switch (data_type) { - case ONNX_NAMESPACE::TensorProto_DataType_FLOAT: - value = *add_init.data(); - break; - case ONNX_NAMESPACE::TensorProto_DataType_FLOAT16: - value = math::halfToFloat(add_init.data()->val); - break; - case ONNX_NAMESPACE::TensorProto_DataType_DOUBLE: - value = static_cast(*add_init.data()); - break; - case ONNX_NAMESPACE::TensorProto_DataType_INT32: - value = static_cast(*add_init.data()); - break; - case ONNX_NAMESPACE::TensorProto_DataType_INT64: - value = static_cast(*add_init.data()); - break; - default: + if (op_type == "Add" || + op_type == "Sub" || + op_type == "Mul" || + op_type == "Div") { + int32_t data_type = initializer->data_type(); + Initializer add_init(*initializer, graph.ModelPath()); + + float value = 0.0f; + switch (data_type) { + case ONNX_NAMESPACE::TensorProto_DataType_FLOAT: + value = *add_init.data(); + break; + case ONNX_NAMESPACE::TensorProto_DataType_FLOAT16: + value = math::halfToFloat(add_init.data()->val); + break; + case ONNX_NAMESPACE::TensorProto_DataType_DOUBLE: + value = static_cast(*add_init.data()); + break; + case ONNX_NAMESPACE::TensorProto_DataType_INT32: + value = static_cast(*add_init.data()); + break; + case ONNX_NAMESPACE::TensorProto_DataType_INT64: + value = static_cast(*add_init.data()); + break; + default: + return false; + } + + if (value != 0.0f && (op_type == "Add" || op_type == "Sub")) { return false; - } + } - if ((op_type == "Add" || op_type == "Sub") && value != 0.0f) { - return false; - } - - if ((op_type == "Mul" || op_type == "Div") && value != 1.0f) { - return false; + if (value != 1.0f && (op_type == "Mul" || op_type == "Div")) { + return false; + } } // reject node output is graph output for now diff --git a/onnxruntime/core/optimizer/transpose_optimization/ort_optimizer_api_impl.cc b/onnxruntime/core/optimizer/transpose_optimization/ort_optimizer_api_impl.cc index d9f08ffe1171e..c532f56b3d3d9 100644 --- a/onnxruntime/core/optimizer/transpose_optimization/ort_optimizer_api_impl.cc +++ b/onnxruntime/core/optimizer/transpose_optimization/ort_optimizer_api_impl.cc @@ -115,7 +115,7 @@ class ApiGraph final : public api::GraphRef { const auto& graph_outputs = graph_.GetOutputs(); graph_outputs_.reserve(graph_outputs.size()); for (const auto* output : graph_outputs) { - graph_outputs_.insert(output->Name()); + graph_outputs_.emplace(output->Name()); } }