diff --git a/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv2d_mm_webgpu.ts b/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv2d_mm_webgpu.ts index 1a03621512888..e5ca3204d4433 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv2d_mm_webgpu.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv2d_mm_webgpu.ts @@ -24,7 +24,7 @@ import {TensorView} from '../../../tensor-view'; import {ProgramInfo, ProgramInputTensorInfoDependency, ProgramUniform} from '../../types'; import {createTensorShapeVariables, inputVariable, outputVariable, ShaderHelper, tensorTypeToWsglStorageType, UniformsArrayType} from '../common'; import {ConvAttributes} from '../conv'; -import {getActivationSnippet} from '../fuse-utils'; +import {appendActivationUniforms, appendActivationUniformsData, getActivationSnippet} from '../fuse-utils'; import {biasSnippet, typeSnippet} from './activation_util'; import {utilFunctions} from './conv_util'; @@ -193,10 +193,7 @@ export const createConv2DMatMulProgramInfo = {type: 'int32', data: [attributes.pads[0], attributes.pads[1]]}, {type: 'int32', data: attributes.strides}, {type: 'int32', data: attributes.dilations} ]; - if (attributes.activation === 'Clip') { - programUniforms.push( - {type: 'float32', data: attributes.clipMax!}, {type: 'float32', data: attributes.clipMin!}); - } + appendActivationUniformsData(attributes, programUniforms); programUniforms.push( ...createTensorShapeVariables(inputs[0].dims), ...createTensorShapeVariables(inputs[1].dims)); const inputDependencies: ProgramInputTensorInfoDependency[] = ['rank', 'rank']; @@ -212,9 +209,7 @@ export const createConv2DMatMulProgramInfo = {name: 'pad', type: 'i32', length: 2}, {name: 'stride', type: 'i32', length: 2}, {name: 'dilation', type: 'i32', length: 2} ]; - if (attributes.activation === 'Clip') { - uniforms.push({name: 'clip_max', type: 'f32'}, {name: 'clip_min', type: 'f32'}); - } + appendActivationUniforms(attributes, uniforms); // TODO: support component 2, 3. const components = isVec4 ? 4 : 1; diff --git a/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_mm_webgpu.ts b/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_mm_webgpu.ts index 33e50a9a39cb9..e50733559dbe9 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_mm_webgpu.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_mm_webgpu.ts @@ -24,7 +24,7 @@ import {TensorView} from '../../../tensor-view'; import {ProgramInfo, ProgramInputTensorInfoDependency, ProgramUniform} from '../../types'; import {createTensorShapeVariables, inputVariable, outputVariable, ShaderHelper, UniformsArrayType} from '../common'; import {ConvTransposeAttributes} from '../conv-transpose'; -import {getActivationSnippet} from '../fuse-utils'; +import {appendActivationUniforms, appendActivationUniformsData, getActivationSnippet} from '../fuse-utils'; import {biasSnippet, typeSnippet} from './activation_util'; import {utilFunctions} from './conv_util'; @@ -201,10 +201,7 @@ export const createConv2DTransposeMatMulProgramInfo = {type: 'int32', data: attributes.strides}, {type: 'int32', data: attributes.dilations}, {type: 'int32', data: filterDims}, {type: 'int32', data: pads} ]; - if (attributes.activation === 'Clip') { - programUniforms.push( - {type: 'float32', data: attributes.clipMax!}, {type: 'float32', data: attributes.clipMin!}); - } + appendActivationUniformsData(attributes, programUniforms); programUniforms.push( ...createTensorShapeVariables(inputs[0].dims), ...createTensorShapeVariables(inputs[1].dims)); @@ -237,9 +234,7 @@ export const createConv2DTransposeMatMulProgramInfo = {name: 'filter_dims', type: 'i32', length: filterDims.length}, {name: 'pads', type: 'i32', length: pads.length} ]; - if (attributes.activation === 'Clip') { - uniforms.push({name: 'clip_max', type: 'f32'}, {name: 'clip_min', type: 'f32'}); - } + appendActivationUniforms(attributes, uniforms); return ` ${utilFunctions('uniforms.result_strides')} ${shaderHelper.registerUniforms(uniforms).declareVariables(...inputVariables, output)}; diff --git a/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/matmul_packed_webgpu.ts b/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/matmul_packed_webgpu.ts index ee71110245252..595345c087a2e 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/matmul_packed_webgpu.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/matmul_packed_webgpu.ts @@ -23,7 +23,7 @@ import {TensorView} from '../../../tensor-view'; import {ShapeUtil} from '../../../util'; import {ProgramInfo, ProgramInputTensorInfoDependency, ProgramUniform} from '../../types'; import {createTensorShapeVariables, getBroadcastDims, IndicesHelper, inputVariable, internalVariable, outputVariable, ShaderHelper, tensorTypeToWsglStorageType, UniformsArrayType} from '../common'; -import {getActivationSnippet, InternalActivationAttributes} from '../fuse-utils'; +import {appendActivationUniforms, appendActivationUniformsData, getActivationSnippet, InternalActivationAttributes} from '../fuse-utils'; import {typeSnippet} from './activation_util'; @@ -449,11 +449,7 @@ export const createMatmulProgramInfo = const outputShapeTemp = [batchSize, dimAOuter, dimBOuter / components]; const programUniforms: ProgramUniform[] = [{type: 'int32', data: dimAOuter}, {type: 'int32', data: dimBOuter}, {type: 'int32', data: dimInner}]; - if (activationAttributes.activation === 'Clip') { - programUniforms.push( - {type: 'float32', data: activationAttributes.clipMax!}, - {type: 'float32', data: activationAttributes.clipMin!}); - } + appendActivationUniformsData(activationAttributes, programUniforms); programUniforms.push( ...createTensorShapeVariables(outerDims), ...createTensorShapeVariables(aShapeTemp), ...createTensorShapeVariables(bShapeTemp)); @@ -481,9 +477,7 @@ export const createMatmulProgramInfo = } const uniforms: UniformsArrayType = [{name: 'dim_a_outer', type: 'i32'}, {name: 'dim_b_outer', type: 'i32'}, {name: 'dim_inner', type: 'i32'}]; - if (activationAttributes.activation === 'Clip') { - uniforms.push({name: 'clip_max', type: 'f32'}, {name: 'clip_min', type: 'f32'}); - } + appendActivationUniforms(activationAttributes, uniforms); const applyActivation = getActivationSnippet(activationAttributes, output.type.value); const declareFunctions = matMulReadWriteFnSource( components, hasBias, applyActivation, [batchDims, A, B, output], [outerDimsA, outerDimsB, outerDims], diff --git a/js/web/lib/wasm/jsep/webgpu/ops/conv-grouped.ts b/js/web/lib/wasm/jsep/webgpu/ops/conv-grouped.ts index f81d6577890c5..2c000f57066de 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/conv-grouped.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/conv-grouped.ts @@ -7,7 +7,7 @@ import {ProgramInfo, ProgramInputTensorInfoDependency, ProgramUniform} from '../ import {createTensorShapeVariables, getMaxComponents, inputVariable, outputVariable, ShaderHelper, UniformsArrayType} from './common'; import {calculateOutputShape, ConvAttributes} from './conv'; -import {getActivationSnippet} from './fuse-utils'; +import {appendActivationUniforms, appendActivationUniformsData, getActivationSnippet} from './fuse-utils'; /** * naive grouped conv implementation, supports 1d/2d conv @@ -32,10 +32,7 @@ export const createGroupedConvProgramInfo = {type: 'uint32', data: [attributes.strides[0], attributes.strides[1]]}, {type: 'uint32', data: [attributes.pads[0], attributes.pads[1]]}, {type: 'uint32', data: outputChannelsPerGroup} ]; - if (attributes.activation === 'Clip') { - programUniforms.push( - {type: 'float32', data: attributes.clipMax!}, {type: 'float32', data: attributes.clipMin!}); - } + appendActivationUniformsData(attributes, programUniforms); programUniforms.push( ...createTensorShapeVariables(xShape), ...createTensorShapeVariables(wShape), ...createTensorShapeVariables(outputShape)); @@ -61,9 +58,7 @@ export const createGroupedConvProgramInfo = {name: 'strides', type: 'u32', length: 2}, {name: 'pads', type: 'u32', length: 2}, {name: 'output_channels_per_group', type: 'u32'} ]; - if (attributes.activation === 'Clip') { - uniforms.push({name: 'clip_max', type: 'f32'}, {name: 'clip_min', type: 'f32'}); - } + appendActivationUniforms(attributes, uniforms); return ` ${shaderHelper.registerUniforms(uniforms).declareVariables(...inputVars, output)} diff --git a/js/web/lib/wasm/jsep/webgpu/ops/fuse-utils.ts b/js/web/lib/wasm/jsep/webgpu/ops/fuse-utils.ts index 2e0aa33a957dc..121062bf8d211 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/fuse-utils.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/fuse-utils.ts @@ -2,11 +2,16 @@ // Licensed under the MIT License. import {MAX_CLIP, MIN_CLIP} from '../../util'; +import {ProgramUniform} from '../types'; + +import {UniformsArrayType} from './common'; export interface InternalActivationAttributes { readonly activation: string; readonly clipMin?: number; readonly clipMax?: number; + readonly alpha?: number; + readonly beta?: number; } export const getActivationSnippet = (attributes: InternalActivationAttributes, valueType: string): string => { @@ -17,16 +22,39 @@ export const getActivationSnippet = (attributes: InternalActivationAttributes, v return `value = (${valueType}(1.0) / (${valueType}(1.0) + exp(-value)));`; case 'Clip': return `value = clamp(value, ${valueType}(uniforms.clip_min), ${valueType}(uniforms.clip_max));`; + case 'HardSigmoid': + return `value = max(${valueType}(0.0), min(${valueType}(1.0), ${valueType}(uniforms.alpha) * value + ${ + valueType}(uniforms.beta)));`; // TODO: adding other activations that can be fused. default: return ''; } }; +export const appendActivationUniformsData = + (attributes: InternalActivationAttributes, programUniform: ProgramUniform[]) => { + if (attributes.activation === 'Clip') { + programUniform.push({type: 'float32', data: attributes.clipMax!}, {type: 'float32', data: attributes.clipMin!}); + } else if (attributes.activation === 'HardSigmoid') { + programUniform.push({type: 'float32', data: attributes.alpha!}, {type: 'float32', data: attributes.beta!}); + } + }; + +export const appendActivationUniforms = (attributes: InternalActivationAttributes, uniforms: UniformsArrayType) => { + if (attributes.activation === 'Clip') { + uniforms.push({name: 'clip_max', type: 'f32'}, {name: 'clip_min', type: 'f32'}); + } else if (attributes.activation === 'HardSigmoid') { + uniforms.push({name: 'alpha', type: 'f32'}, {name: 'beta', type: 'f32'}); + } +}; + export const parseInternalActivationAttributes = (attributes: Record|undefined): InternalActivationAttributes => { const activation = attributes?.activation as string || ''; - + if (activation === 'HardSigmoid') { + const [alpha, beta] = attributes?.activation_params as [number, number] || [0.2, 0.5]; + return {activation, alpha, beta}; + } if (activation === 'Clip') { const [clipMin, clipMax] = attributes?.activation_params as [number, number] || [MIN_CLIP, MAX_CLIP]; return {activation, clipMax, clipMin}; diff --git a/js/web/lib/wasm/jsep/webgpu/ops/matmul.ts b/js/web/lib/wasm/jsep/webgpu/ops/matmul.ts index c946ea6366123..188b88b2510d8 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/matmul.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/matmul.ts @@ -7,7 +7,7 @@ import {ComputeContext, ProgramInfo, ProgramUniform} from '../types'; import {createMatmulProgramInfo} from './3rd-party/matmul_packed_webgpu'; import {createTensorShapeVariables, getBroadcastDims, getMaxComponents, IndicesHelper, inputVariable, internalVariable, outputVariable, ShaderHelper, UniformsArrayType,} from './common'; -import {getActivationSnippet, InternalActivationAttributes} from './fuse-utils'; +import {appendActivationUniforms, appendActivationUniformsData, getActivationSnippet, InternalActivationAttributes} from './fuse-utils'; export const createNaiveMatmulProgramInfo = (inputs: readonly TensorView[], activationAttributes: InternalActivationAttributes, outputShape: readonly number[], @@ -32,11 +32,7 @@ export const createNaiveMatmulProgramInfo = {type: 'uint32', data: outputSize}, {type: 'uint32', data: M}, {type: 'uint32', data: N}, {type: 'uint32', data: K} ]; - if (activationAttributes.activation === 'Clip') { - programUniforms.push( - {type: 'float32', data: activationAttributes.clipMax!}, - {type: 'float32', data: activationAttributes.clipMin!}); - } + appendActivationUniformsData(activationAttributes, programUniforms); programUniforms.push( ...createTensorShapeVariables(outerDims), ...createTensorShapeVariables(aShape), ...createTensorShapeVariables(bShape)); @@ -69,9 +65,7 @@ export const createNaiveMatmulProgramInfo = {name: 'output_size', type: 'u32'}, {name: 'M', type: 'u32'}, {name: 'N', type: 'u32'}, {name: 'K', type: 'u32'} ]; - if (activationAttributes.activation === 'Clip') { - uniforms.push({name: 'clip_max', type: 'f32'}, {name: 'clip_min', type: 'f32'}); - } + appendActivationUniforms(activationAttributes, uniforms); const getIndices = (variable: IndicesHelper, broadCastDims: number[]) => { const rank = variable.rank;