From 3ae5df1d185fe79b487ca0e6c12d891378d48af7 Mon Sep 17 00:00:00 2001 From: Adrian Lizarraga Date: Wed, 19 Jun 2024 12:37:42 -0700 Subject: [PATCH] [QNN EP] Update QNN SDK to 2.23.0 (#21008) ### Description - Updates CI pipelines to use QNN SDK 2.23.0 by default. - QNN SDK adds support for int64 Cast. This allows QNN EP to support ONNX ArgMax/ArgMin/TopK operators that generate an int64 graph output. Example translation of ArgMax: - **ONNX**: input --> ArgMax --> output (int64) - **QNN**: input --> ArgMax --> Cast (int32 to int64) --> output (int64) ### Motivation and Context Update onnxruntime to use the latest QNN SDK. --- .../opbuilder/argmax_min_op_builder.cc | 36 +++------ .../providers/qnn/builder/opbuilder/topk.cc | 11 --- .../test/providers/qnn/argmaxmin_op_test.cc | 77 +------------------ onnxruntime/test/providers/qnn/cast_test.cc | 14 ++++ .../test/providers/qnn/topk_op_test.cc | 50 ++++-------- ...arm64-v8a-QNN-crosscompile-ci-pipeline.yml | 2 +- .../c-api-noopenmp-packaging-pipelines.yml | 2 +- .../azure-pipelines/linux-qnn-ci-pipeline.yml | 2 +- .../azure-pipelines/py-packaging-pipeline.yml | 2 +- .../qnn-ep-nuget-packaging-pipeline.yml | 2 +- .../templates/jobs/download_linux_qnn_sdk.yml | 2 +- .../templates/jobs/download_win_qnn_sdk.yml | 2 +- .../templates/py-packaging-stage.yml | 2 +- .../templates/py-win-arm64-qnn.yml | 2 +- .../templates/py-win-x64-qnn.yml | 2 +- .../azure-pipelines/templates/qnn-ep-win.yml | 2 +- .../win-qnn-arm64-ci-pipeline.yml | 2 +- .../azure-pipelines/win-qnn-ci-pipeline.yml | 2 +- 18 files changed, 54 insertions(+), 160 deletions(-) diff --git a/onnxruntime/core/providers/qnn/builder/opbuilder/argmax_min_op_builder.cc b/onnxruntime/core/providers/qnn/builder/opbuilder/argmax_min_op_builder.cc index 1be460c989732..c685fa065e2ba 100644 --- a/onnxruntime/core/providers/qnn/builder/opbuilder/argmax_min_op_builder.cc +++ b/onnxruntime/core/providers/qnn/builder/opbuilder/argmax_min_op_builder.cc @@ -13,17 +13,12 @@ namespace onnxruntime { namespace qnn { // ArgMax/ArgMin support limitations: -// - HTP only: cannot generate a graph output // - HTP only: max input rank is 4. // - All backends: ONNX select_last_index attribute must be 0. class ArgMaxMinOpBuilder : public BaseOpBuilder { public: ArgMaxMinOpBuilder() : BaseOpBuilder("ArgMaxMinOpBuilder") {} - Status IsOpSupported(QnnModelWrapper& qnn_model_wrapper, - const NodeUnit& node_unit, - const logging::Logger& logger) const override ORT_MUST_USE_RESULT; - protected: Qnn_DataType_t GetSupportedOutputDataType(size_t index, Qnn_DataType_t qnn_data_type) const override ORT_MUST_USE_RESULT; @@ -35,31 +30,18 @@ class ArgMaxMinOpBuilder : public BaseOpBuilder { bool do_op_validation) const override ORT_MUST_USE_RESULT; }; -Status ArgMaxMinOpBuilder::IsOpSupported(QnnModelWrapper& qnn_model_wrapper, - const NodeUnit& node_unit, - const logging::Logger& logger) const { - // ONNX ArgMax/ArgMin ops output int64 indices, but the equivalent QNN ops output uint32 indices. - // The QNN HTP backend does not generally support the int64 type, but QNN EP can just use the uint32 type - // for ArgMax/ArgMin ops within the graph. However, if the ArgMin/ArgMax op **generates** a graph output, - // then we cannot support it on the HTP backend. - bool is_npu_backend = IsNpuBackend(qnn_model_wrapper.GetQnnBackendType()); - if (is_npu_backend) { - const std::string& output_name = node_unit.Outputs()[0].node_arg.Name(); - ORT_RETURN_IF(qnn_model_wrapper.IsGraphOutput(output_name), - "QNN EP does not support ArgMin/ArgMax ops that generate a graph output."); - } - - return AddToModelBuilder(qnn_model_wrapper, node_unit, logger, true); -} - Qnn_DataType_t ArgMaxMinOpBuilder::GetSupportedOutputDataType(size_t index, Qnn_DataType_t qnn_data_type) const { - // ONNX ArgMxx ops have int64 output, but QNN requires uint32. + // ONNX ArgMxx ops have int64 output, but QNN requires uint32 or int32. // If this node produces a graph output, BaseOpBuilder::ProcessOutputs() adds a Cast node after the ArgMxx op. - // Otherwise, it just set the output type to unit32. This only works for the QNN CPU backend, since the HTP backend - // does not generally support int64. + // Otherwise, it just set the output type to unit32 or int32. ORT_UNUSED_PARAMETER(index); - ORT_UNUSED_PARAMETER(qnn_data_type); - return QNN_DATATYPE_UINT_32; + if (qnn_data_type == QNN_DATATYPE_INT_64) { + return QNN_DATATYPE_INT_32; + } else if (qnn_data_type == QNN_DATATYPE_UINT_64) { + return QNN_DATATYPE_UINT_32; + } + + return qnn_data_type; } Status ArgMaxMinOpBuilder::ProcessAttributesAndOutputs(QnnModelWrapper& qnn_model_wrapper, diff --git a/onnxruntime/core/providers/qnn/builder/opbuilder/topk.cc b/onnxruntime/core/providers/qnn/builder/opbuilder/topk.cc index 047972294f78c..d22c0811682d0 100644 --- a/onnxruntime/core/providers/qnn/builder/opbuilder/topk.cc +++ b/onnxruntime/core/providers/qnn/builder/opbuilder/topk.cc @@ -66,17 +66,6 @@ Status TopKOpBuilder::ExplictOpCheck(QnnModelWrapper& qnn_model_wrapper, const N ORT_RETURN_IF_NOT(axis == -1 || axis == static_cast(rank - 1), "QNN TopK's axis is always the last dimension"); - // ONNX TopK outputs int64 indices, but the equivalent QNN op outputs uint32 indices. - // The QNN HTP backend does not generally support the int64 type, but QNN EP can just use the uint32 type - // for TopK ops within the graph. However, if the TopK op **generates** a graph output, - // then we cannot support it on the HTP backend. - bool is_npu_backend = IsNpuBackend(qnn_model_wrapper.GetQnnBackendType()); - if (is_npu_backend) { - const std::string& output_name = node_unit.Outputs()[0].node_arg.Name(); - ORT_RETURN_IF(qnn_model_wrapper.IsGraphOutput(output_name), - "QNN EP does not support TopK ops that generate a graph output."); - } - return Status::OK(); } diff --git a/onnxruntime/test/providers/qnn/argmaxmin_op_test.cc b/onnxruntime/test/providers/qnn/argmaxmin_op_test.cc index e86151008e24d..c514cf16b2f3c 100644 --- a/onnxruntime/test/providers/qnn/argmaxmin_op_test.cc +++ b/onnxruntime/test/providers/qnn/argmaxmin_op_test.cc @@ -15,28 +15,7 @@ namespace onnxruntime { namespace test { -// Builds a float32 model with ArgMin/ArgMax. -static GetTestModelFn BuildArgMxxTestCase(const std::string& op_type, TestInputDef input_def, - const std::vector& attrs) { - return [op_type, input_def, attrs](ModelTestBuilder& builder) { - auto* input = MakeTestInput(builder, input_def); - - auto* argm_output = builder.MakeIntermediate(); - Node& argm_node = builder.AddNode(op_type, {input}, {argm_output}); - for (const auto& attr : attrs) { - argm_node.AddAttributeProto(attr); - } - - // Add cast to uint32 - auto* output = builder.MakeOutput(); - Node& cast_node = builder.AddNode("Cast", {argm_output}, {output}); - const auto dst_type = ONNX_NAMESPACE::TensorProto_DataType::TensorProto_DataType_UINT32; - cast_node.AddAttribute("to", static_cast(dst_type)); - }; -} - -// Builds a QDQ model with ArgMin/ArgMax and a Cast to uint32. The quantization parameters are computed from the provided -// input definition. +// Builds a QDQ model with ArgMin/ArgMax. The quantization parameters are computed from the provided input definition. template static GetTestQDQModelFn BuildQDQArgMxxTestCase(const std::string& op_type, TestInputDef input_def, const std::vector& attrs) { @@ -49,17 +28,11 @@ static GetTestQDQModelFn BuildQDQArgMxxTestCase(const std::string& op_typ // input -> Q -> DQ -> auto* input_qdq = AddQDQNodePair(builder, input, input_qparams.scale, input_qparams.zero_point); - auto* argm_output = builder.MakeIntermediate(); + auto* argm_output = builder.MakeOutput(); Node& argm_node = builder.AddNode(op_type, {input_qdq}, {argm_output}); for (const auto& attr : attrs) { argm_node.AddAttributeProto(attr); } - - // Cast to uint32 (HTP does not support int64 as graph output) - auto* output = builder.MakeOutput(); - Node& cast_node = builder.AddNode("Cast", {argm_output}, {output}); - const auto dst_type = ONNX_NAMESPACE::TensorProto_DataType::TensorProto_DataType_UINT32; - cast_node.AddAttribute("to", static_cast(dst_type)); }; } @@ -77,7 +50,7 @@ static void RunCPUArgMxxOpTest(const std::string& op_type, TestInputDef i provider_options["backend_path"] = "libQnnCpu.so"; #endif - RunQnnModelTest(BuildArgMxxTestCase(op_type, input_def, attrs), + RunQnnModelTest(BuildOpTestCase(op_type, {input_def}, {}, attrs), provider_options, opset, expected_ep_assignment); @@ -98,7 +71,7 @@ static void RunQDQArgMxxOpTest(const std::string& op_type, TestInputDef i provider_options["backend_path"] = "libQnnHtp.so"; #endif - TestQDQModelAccuracy(BuildArgMxxTestCase(op_type, input_def, attrs), // baseline float32 model + TestQDQModelAccuracy(BuildOpTestCase(op_type, {input_def}, {}, attrs), // baseline float32 model BuildQDQArgMxxTestCase(op_type, input_def, attrs), // QDQ model provider_options, opset, @@ -190,48 +163,6 @@ TEST_F(QnnHTPBackendTests, ArgMaxMinU8_RankGreaterThan4_Unsupported) { ExpectedEPNodeAssignment::None, 13); } -// Test that ArgMax/ArgMin are not supported if they generate a graph output. -TEST_F(QnnHTPBackendTests, ArgMaxMin_AsGraphOutputUnsupported) { - ProviderOptions provider_options; - -#if defined(_WIN32) - provider_options["backend_path"] = "QnnHtp.dll"; -#else - provider_options["backend_path"] = "libQnnHtp.so"; -#endif - - // Utility function that creates a QDQ model with ArgMax/ArgMin that produce a graph output. - auto model_builder_func = [](const std::string& op_type, const TestInputDef& input_def, - const std::vector& attrs) -> GetTestModelFn { - return [op_type, input_def, attrs](ModelTestBuilder& builder) { - QuantParams input_qparams = GetTestInputQuantParams(input_def); - - auto* input = MakeTestInput(builder, input_def); - auto* output = builder.MakeOutput(); - - // input -> Q -> DQ -> - auto* input_qdq = AddQDQNodePair(builder, input, input_qparams.scale, input_qparams.zero_point); - - Node& argm_node = builder.AddNode(op_type, {input_qdq}, {output}); - for (const auto& attr : attrs) { - argm_node.AddAttributeProto(attr); - } - }; - }; - - const int expected_nodes_in_graph = -1; // Don't care exactly how many nodes in graph assigned to CPU EP. - RunQnnModelTest(model_builder_func("ArgMax", TestInputDef({1, 3, 4}, false, -1.0f, 1.0f), {}), - provider_options, - 13, - ExpectedEPNodeAssignment::None, // No nodes should be assigned to QNN EP! - expected_nodes_in_graph); - RunQnnModelTest(model_builder_func("ArgMin", TestInputDef({1, 3, 4}, false, -1.0f, 1.0f), {}), - provider_options, - 13, - ExpectedEPNodeAssignment::None, // No nodes should be assigned to QNN EP! - expected_nodes_in_graph); -} - #endif // defined(__aarch64__) || defined(_M_ARM64) || defined(__linux__) } // namespace test } // namespace onnxruntime diff --git a/onnxruntime/test/providers/qnn/cast_test.cc b/onnxruntime/test/providers/qnn/cast_test.cc index 0b2d168b06ca1..f03782c33c30a 100644 --- a/onnxruntime/test/providers/qnn/cast_test.cc +++ b/onnxruntime/test/providers/qnn/cast_test.cc @@ -107,6 +107,20 @@ TEST_F(QnnHTPBackendTests, TestCastFloatToInt32HTP) { RunCastOpTest({3, 3}, ONNX_NAMESPACE::TensorProto_DataType::TensorProto_DataType_INT32, ExpectedEPNodeAssignment::All, true); } + +// Cast int64_t to int32_t on HTP +// Supported in QNN SDK 2.23 +TEST_F(QnnHTPBackendTests, TestCastInt64ToInt32HTP) { + RunCastOpTest({3, 3}, ONNX_NAMESPACE::TensorProto_DataType::TensorProto_DataType_INT32, + ExpectedEPNodeAssignment::All, true); +} + +// Cast int32_t to int64_t on HTP +// Supported in QNN SDK 2.23 +TEST_F(QnnHTPBackendTests, TestCastInt32ToInt64HTP) { + RunCastOpTest({3, 3}, ONNX_NAMESPACE::TensorProto_DataType::TensorProto_DataType_INT64, + ExpectedEPNodeAssignment::All, true); +} #endif // defined(__aarch64__) || defined(_M_ARM64) || defined(__linux__) } // namespace test diff --git a/onnxruntime/test/providers/qnn/topk_op_test.cc b/onnxruntime/test/providers/qnn/topk_op_test.cc index 93e725af5f20e..5a9351b9366ec 100644 --- a/onnxruntime/test/providers/qnn/topk_op_test.cc +++ b/onnxruntime/test/providers/qnn/topk_op_test.cc @@ -18,27 +18,18 @@ namespace test { template inline GetTestModelFn BuildTopKTestCase(const TestInputDef& input_def, const TestInputDef& k_def, - const std::vector& attrs, - bool cast_output_indices = true) { - return [input_def, k_def, attrs, cast_output_indices](ModelTestBuilder& builder) { + const std::vector& attrs) { + return [input_def, k_def, attrs](ModelTestBuilder& builder) { NodeArg* input = MakeTestInput(builder, input_def); NodeArg* k_input = MakeTestInput(builder, k_def); NodeArg* values_output = builder.MakeOutput(); - NodeArg* indices_output = cast_output_indices ? builder.MakeIntermediate() : builder.MakeOutput(); + NodeArg* indices_output = builder.MakeOutput(); Node& topk_node = builder.AddNode("TopK", {input, k_input}, {values_output, indices_output}); for (const auto& attr : attrs) { topk_node.AddAttributeProto(attr); } - - // Cast indices to uint32 - if (cast_output_indices) { - auto* uint32_indices_output = builder.MakeOutput(); - Node& cast_node = builder.AddNode("Cast", {indices_output}, {uint32_indices_output}); - const auto dst_type = ONNX_NAMESPACE::TensorProto_DataType::TensorProto_DataType_UINT32; - cast_node.AddAttribute("to", static_cast(dst_type)); - } }; } @@ -58,7 +49,7 @@ static void RunTopKTestOnCPU(const TestInputDef& input_def, provider_options["backend_path"] = "libQnnCpu.so"; #endif - RunQnnModelTest(BuildTopKTestCase(input_def, k_def, attrs, false /*cast_output_indices*/), + RunQnnModelTest(BuildTopKTestCase(input_def, k_def, attrs), provider_options, opset, expected_ep_assignment); @@ -131,26 +122,19 @@ GetTestQDQModelFn BuildQDQTopKTestCase(const TestInputDef& inp // K input NodeArg* k_input = MakeTestInput(builder, k_def); - // Reshape op + // TopK_values_output -> Q -> DQ -> output + // NOTE: Create output QDQ nodes before the TopK node so that TopK's 'values' output is the graph's first output. NodeArg* values_output = builder.MakeIntermediate(); - NodeArg* indices_output = builder.MakeIntermediate(); + output_qparams[0] = input_qparams; // Input and output qparams must be equal. + AddQDQNodePairWithOutputAsGraphOutput(builder, values_output, input_qparams.scale, + input_qparams.zero_point, use_contrib_qdq); + // TopK node + NodeArg* indices_output = builder.MakeOutput(); Node& topk_node = builder.AddNode("TopK", {input_qdq, k_input}, {values_output, indices_output}); for (const auto& attr : attrs) { topk_node.AddAttributeProto(attr); } - - // op_output -> Q -> DQ -> output - // NOTE: Input and output quantization parameters must be equal for Reshape. - output_qparams[0] = input_qparams; // Overwrite! - AddQDQNodePairWithOutputAsGraphOutput(builder, values_output, input_qparams.scale, - input_qparams.zero_point, use_contrib_qdq); - - // Cast indices to uint32 (HTP backend does not support int64 graph outputs) - auto* uint32_indices_output = builder.MakeOutput(); - Node& cast_node = builder.AddNode("Cast", {indices_output}, {uint32_indices_output}); - const auto dst_type = ONNX_NAMESPACE::TensorProto_DataType::TensorProto_DataType_UINT32; - cast_node.AddAttribute("to", static_cast(dst_type)); }; } @@ -171,7 +155,7 @@ static void RunQDQTopKTestOnHTP(const TestInputDef& input_def, provider_options["backend_path"] = "libQnnHtp.so"; #endif - auto f32_model_builder = BuildTopKTestCase(input_def, k_def, attrs, true /*cast_output_indices*/); + auto f32_model_builder = BuildTopKTestCase(input_def, k_def, attrs); auto qdq_model_builder = BuildQDQTopKTestCase(input_def, k_def, attrs, use_contrib_qdq); TestQDQModelAccuracy(f32_model_builder, qdq_model_builder, @@ -189,18 +173,12 @@ TEST_F(QnnHTPBackendTests, TopK_LargestFloats_U8_LastAxis) { } // Test 16-bit QDQ TopK on HTP backend: top 2 largest floats from last axis -// TODO: Inaccuracy detected for output 'output_0', element 6. -// Output quant params: scale=0.00061036087572574615, zero_point=32768. -// Expected val: -7.2340402603149414 -// QNN QDQ val: -17.446556091308594 (err 10.212515830993652) -// CPU QDQ val: -7.2339968681335449 (err 4.3392181396484375e-05) -TEST_F(QnnHTPBackendTests, DISABLED_TopK_LargestFloats_U16_LastAxis) { +TEST_F(QnnHTPBackendTests, TopK_LargestFloats_U16_LastAxis) { RunQDQTopKTestOnHTP(TestInputDef({1, 3, 4, 4}, false, GetFloatDataInRange(-20.0f, 20.0f, 48)), TestInputDef({1}, true /* is_initializer */, {2}), {}, // Attributes ExpectedEPNodeAssignment::All, - 19, // opset - true); // Use com.microsoft Q/DQ ops + 21); // opset } #endif // defined(__aarch64__) || defined(_M_ARM64) || defined(__linux__) diff --git a/tools/ci_build/github/azure-pipelines/android-arm64-v8a-QNN-crosscompile-ci-pipeline.yml b/tools/ci_build/github/azure-pipelines/android-arm64-v8a-QNN-crosscompile-ci-pipeline.yml index 1703490992fb4..a4a3d0e6b334b 100644 --- a/tools/ci_build/github/azure-pipelines/android-arm64-v8a-QNN-crosscompile-ci-pipeline.yml +++ b/tools/ci_build/github/azure-pipelines/android-arm64-v8a-QNN-crosscompile-ci-pipeline.yml @@ -31,7 +31,7 @@ parameters: - name: QnnSdk displayName: QNN SDK version type: string - default: 2.22.0.240425 + default: 2.23.0.240531 jobs: - job: Build_QNN_EP diff --git a/tools/ci_build/github/azure-pipelines/c-api-noopenmp-packaging-pipelines.yml b/tools/ci_build/github/azure-pipelines/c-api-noopenmp-packaging-pipelines.yml index 45dc1487f0c66..fbb03abb70e88 100644 --- a/tools/ci_build/github/azure-pipelines/c-api-noopenmp-packaging-pipelines.yml +++ b/tools/ci_build/github/azure-pipelines/c-api-noopenmp-packaging-pipelines.yml @@ -62,7 +62,7 @@ parameters: - name: QnnSdk displayName: QNN SDK Version type: string - default: 2.22.0.240425 + default: 2.23.0.240531 resources: repositories: diff --git a/tools/ci_build/github/azure-pipelines/linux-qnn-ci-pipeline.yml b/tools/ci_build/github/azure-pipelines/linux-qnn-ci-pipeline.yml index a1339652a9495..29ebf67dd3f91 100644 --- a/tools/ci_build/github/azure-pipelines/linux-qnn-ci-pipeline.yml +++ b/tools/ci_build/github/azure-pipelines/linux-qnn-ci-pipeline.yml @@ -32,7 +32,7 @@ parameters: - name: QnnSdk displayName: QNN SDK version type: string - default: 2.22.0.240425 + default: 2.23.0.240531 jobs: - job: Build_QNN_EP diff --git a/tools/ci_build/github/azure-pipelines/py-packaging-pipeline.yml b/tools/ci_build/github/azure-pipelines/py-packaging-pipeline.yml index df4ed796f24e7..8d1b6b7854e50 100644 --- a/tools/ci_build/github/azure-pipelines/py-packaging-pipeline.yml +++ b/tools/ci_build/github/azure-pipelines/py-packaging-pipeline.yml @@ -59,7 +59,7 @@ parameters: - name: qnn_sdk_version type: string displayName: 'QNN SDK version. Only for QNN packages.' - default: 2.22.0.240425 + default: 2.23.0.240531 trigger: none diff --git a/tools/ci_build/github/azure-pipelines/qnn-ep-nuget-packaging-pipeline.yml b/tools/ci_build/github/azure-pipelines/qnn-ep-nuget-packaging-pipeline.yml index c5212bd495872..11e11384f2355 100644 --- a/tools/ci_build/github/azure-pipelines/qnn-ep-nuget-packaging-pipeline.yml +++ b/tools/ci_build/github/azure-pipelines/qnn-ep-nuget-packaging-pipeline.yml @@ -2,7 +2,7 @@ parameters: - name: QnnSdk displayName: QNN SDK Version type: string - default: 2.22.0.240425 + default: 2.23.0.240531 - name: build_config displayName: Build Configuration diff --git a/tools/ci_build/github/azure-pipelines/templates/jobs/download_linux_qnn_sdk.yml b/tools/ci_build/github/azure-pipelines/templates/jobs/download_linux_qnn_sdk.yml index 236998407ad16..ada3603ae8476 100644 --- a/tools/ci_build/github/azure-pipelines/templates/jobs/download_linux_qnn_sdk.yml +++ b/tools/ci_build/github/azure-pipelines/templates/jobs/download_linux_qnn_sdk.yml @@ -1,7 +1,7 @@ parameters: - name: QnnSDKVersion type: string - default: '2.22.0.240425' + default: '2.23.0.240531' steps: - script: | diff --git a/tools/ci_build/github/azure-pipelines/templates/jobs/download_win_qnn_sdk.yml b/tools/ci_build/github/azure-pipelines/templates/jobs/download_win_qnn_sdk.yml index 0f43dfc497dff..3a68803896ab3 100644 --- a/tools/ci_build/github/azure-pipelines/templates/jobs/download_win_qnn_sdk.yml +++ b/tools/ci_build/github/azure-pipelines/templates/jobs/download_win_qnn_sdk.yml @@ -1,7 +1,7 @@ parameters: - name: QnnSDKVersion type: string - default: '2.22.0.240425' + default: '2.23.0.240531' steps: - powershell: | diff --git a/tools/ci_build/github/azure-pipelines/templates/py-packaging-stage.yml b/tools/ci_build/github/azure-pipelines/templates/py-packaging-stage.yml index 60c365ed32f84..588ffca30c262 100644 --- a/tools/ci_build/github/azure-pipelines/templates/py-packaging-stage.yml +++ b/tools/ci_build/github/azure-pipelines/templates/py-packaging-stage.yml @@ -63,7 +63,7 @@ parameters: - name: qnn_sdk_version type: string displayName: 'QNN SDK version. Only for QNN packages.' - default: 2.22.0.240425 + default: 2.23.0.240531 stages: - ${{ if eq(parameters.enable_windows_cpu, true) }}: diff --git a/tools/ci_build/github/azure-pipelines/templates/py-win-arm64-qnn.yml b/tools/ci_build/github/azure-pipelines/templates/py-win-arm64-qnn.yml index 32fdf4819bd88..af239b4384af9 100644 --- a/tools/ci_build/github/azure-pipelines/templates/py-win-arm64-qnn.yml +++ b/tools/ci_build/github/azure-pipelines/templates/py-win-arm64-qnn.yml @@ -7,7 +7,7 @@ parameters: - name: QNN_SDK displayName: QNN SDK Version type: string - default: 2.22.0.240425 + default: 2.23.0.240531 - name: PYTHON_VERSION type: string diff --git a/tools/ci_build/github/azure-pipelines/templates/py-win-x64-qnn.yml b/tools/ci_build/github/azure-pipelines/templates/py-win-x64-qnn.yml index 668e51c828dcd..0d1d3c5ced400 100644 --- a/tools/ci_build/github/azure-pipelines/templates/py-win-x64-qnn.yml +++ b/tools/ci_build/github/azure-pipelines/templates/py-win-x64-qnn.yml @@ -7,7 +7,7 @@ parameters: - name: QNN_SDK displayName: QNN SDK Version type: string - default: 2.22.0.240425 + default: 2.23.0.240531 - name: ENV_SETUP_SCRIPT type: string diff --git a/tools/ci_build/github/azure-pipelines/templates/qnn-ep-win.yml b/tools/ci_build/github/azure-pipelines/templates/qnn-ep-win.yml index 6534490dd9ade..b4c4f36c5dcc6 100644 --- a/tools/ci_build/github/azure-pipelines/templates/qnn-ep-win.yml +++ b/tools/ci_build/github/azure-pipelines/templates/qnn-ep-win.yml @@ -1,5 +1,5 @@ parameters: - QnnSdk: '2.22.0.240425' + QnnSdk: '2.23.0.240531' build_config: 'RelWithDebInfo' IsReleaseBuild: false DoEsrp: false diff --git a/tools/ci_build/github/azure-pipelines/win-qnn-arm64-ci-pipeline.yml b/tools/ci_build/github/azure-pipelines/win-qnn-arm64-ci-pipeline.yml index 0053a4a64ee02..97745fd09fbf7 100644 --- a/tools/ci_build/github/azure-pipelines/win-qnn-arm64-ci-pipeline.yml +++ b/tools/ci_build/github/azure-pipelines/win-qnn-arm64-ci-pipeline.yml @@ -32,7 +32,7 @@ parameters: - name: QnnSdk displayName: QNN SDK version type: string - default: 2.22.0.240425 + default: 2.23.0.240531 jobs: - job: 'build' diff --git a/tools/ci_build/github/azure-pipelines/win-qnn-ci-pipeline.yml b/tools/ci_build/github/azure-pipelines/win-qnn-ci-pipeline.yml index ede7b3d336768..2ab81e16cd57e 100644 --- a/tools/ci_build/github/azure-pipelines/win-qnn-ci-pipeline.yml +++ b/tools/ci_build/github/azure-pipelines/win-qnn-ci-pipeline.yml @@ -32,7 +32,7 @@ parameters: - name: QnnSdk displayName: QNN SDK version type: string - default: 2.22.0.240425 + default: 2.23.0.240531 jobs: - job: 'build'