diff --git a/dockerfiles/Dockerfile.cuda b/dockerfiles/Dockerfile.cuda index b5701eea82c6c..d2d656648f2e7 100644 --- a/dockerfiles/Dockerfile.cuda +++ b/dockerfiles/Dockerfile.cuda @@ -2,16 +2,19 @@ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------- -# Build onnxruntime-gpu python package with CUDA 12.6 & CUDNN 9.4 for python 3.12 in Ubuntu 24.04 for Nvidia GPU. +# Build onnxruntime-gpu python package with CUDA 12.x & CUDNN 9.x for python 3.12 in Ubuntu 24.04. # If memory is less than 64GB, you may change "--parallel" to "--parallel 4" to avoid out-of-memory error. -FROM nvcr.io/nvidia/cuda:12.6.1-devel-ubuntu24.04 +ARG CUDA_VERSION=12.6.1 +ARG CUDNN_VERSION=9.5.0.50 +ARG OS=ubuntu24.04 -# Target CUDA device with compute capability >= 6.1 +FROM nvcr.io/nvidia/cuda:${CUDA_VERSION}-devel-${OS} +ARG CUDA_VERSION +ARG CUDNN_VERSION ARG CMAKE_CUDA_ARCHITECTURES="61;70;75;80;86;90" ENV DEBIAN_FRONTEND=noninteractive -MAINTAINER Changming Sun "chasun@microsoft.com" # Add source code to /code ADD . /code @@ -34,9 +37,11 @@ RUN apt-get update && apt-get install -y --no-install-recommends \ && rm -rf /var/lib/apt/lists/* # Install CUDNN 9.4.0.58 for building ONNX Runtime with CUDA. -RUN wget https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-9.4.0.58_cuda12-archive.tar.xz \ +RUN cudnn_tar="cudnn-linux-x86_64-${CUDNN_VERSION}_cuda${CUDA_VERSION%%.*}-archive.tar.xz" \ + && wget "https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/${cudnn_tar}" \ && mkdir -p /code/build/cudnn \ - && tar -Jxvf cudnn-linux-x86_64-9.4.0.58_cuda12-archive.tar.xz -C /code/build/cudnn --strip=1 + && tar -Jxvf ${cudnn_tar} -C /code/build/cudnn --strip=1 \ + && rm -f ${cudnn_tar} # Create a virtual environment and install dependencies, then build ONNX Runtime with CUDA support. RUN cd /code \ @@ -55,34 +60,52 @@ RUN cd /code \ --cmake_extra_defines ONNXRUNTIME_VERSION=$(cat ./VERSION_NUMBER) "CMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}" onnxruntime_BUILD_UNIT_TESTS=OFF # Start second stage to copy the build artifacts -FROM nvcr.io/nvidia/cuda:12.6.1-runtime-ubuntu24.04 -ENV DEBIAN_FRONTEND=noninteractive +FROM nvcr.io/nvidia/cuda:${CUDA_VERSION}-runtime-${OS} +ARG CUDA_VERSION +ARG CUDNN_VERSION +ARG GIT_COMMIT +ARG GIT_BRANCH +ARG ONNXRUNTIME_VERSION + +# Make sure the required build arguments are set. See README.md for more information. +RUN test -n ${GIT_COMMIT:?} +RUN test -n ${GIT_BRANCH:?} +RUN test -n ${ONNXRUNTIME_VERSION:?} + +LABEL CUDA_VERSION="${CUDA_VERSION}" +LABEL CUDNN_VERSION="${CUDNN_VERSION}" +LABEL maintainer="Changming Sun " +LABEL onnxruntime_version="${ONNXRUNTIME_VERSION}" +LABEL onnxruntime_git_branch="${GIT_BRANCH}" +LABEL onnxruntime_git_commit="${GIT_COMMIT}" # Copy built wheel and license COPY --from=0 /code/build/Linux/Release/dist /ort COPY --from=0 /code/dockerfiles/LICENSE-IMAGE.txt /code/LICENSE-IMAGE.txt -# Set LD_LIBRARY_PATH so that runtime can load CUDA and CUDNN DLLs. -# CUDNN will be installed by nvidia-cudnn-cu12 python package later. -# Its location is in the site-packages directory, which can be retrieved like the following: -# python -c "import sysconfig; print(sysconfig.get_path('purelib'))" +# Set environment variables +ENV DEBIAN_FRONTEND=noninteractive +ENV CUDNN_VERSION=$CUDNN_VERSION +ENV ONNXRUNTIME_VERSION=$ONNXRUNTIME_VERSION +# CUDNN from nvidia-cudnn-cu12 python package is located in the site-packages directory of python virtual environment. ENV LD_LIBRARY_PATH="/ort/env/lib/python3.12/site-packages/nvidia/cudnn/lib:/usr/local/cuda/lib64" -# Install runtime dependencies, and run a simple test to verify the installation. +# Install runtime dependencies RUN apt-get update && apt-get install -y --no-install-recommends \ libstdc++6 \ ca-certificates \ python3-pip \ python3.12-venv \ - unattended-upgrades \ - && unattended-upgrade \ && python3 -m venv /ort/env \ && . /ort/env/bin/activate \ && pip install /ort/*.whl \ - && pip install nvidia-cudnn-cu12==9.4.0.58 \ + && pip install nvidia-cudnn-cu${CUDA_VERSION%%.*}==${CUDNN_VERSION} \ && python -c 'import onnxruntime; print(onnxruntime.get_available_providers())' \ && rm -rf /ort/*.whl \ && rm -rf /var/lib/apt/lists/* # Ensure the virtual environment is always activated when running commands in the container. RUN echo ". /ort/env/bin/activate" >> ~/.bashrc + +# Set the default command to start an interactive bash shell +CMD [ "/bin/bash" ] diff --git a/dockerfiles/README.md b/dockerfiles/README.md index 008587a01082b..7825940571769 100644 --- a/dockerfiles/README.md +++ b/dockerfiles/README.md @@ -40,18 +40,33 @@ The docker file supports both x86_64 and ARM64(aarch64). You may use docker's "- However, we cannot build the code for 32-bit ARM in such a way since a 32-bit compiler/linker might not have enough memory to generate the binaries. ## CUDA -**Ubuntu 22.04, CUDA 12.1, CuDNN 8** +**Ubuntu 24.04, CUDA 12.x, CuDNN 9.x** 1. Build the docker image from the Dockerfile in this repository. + Choose available [cuda version](https://hub.docker.com/r/nvidia/cuda/tags) or [cudnn version](https://pypi.org/project/nvidia-cudnn-cu12/#history), then build docker image like the following: + ``` - docker build -t onnxruntime-cuda -f Dockerfile.cuda .. + git submodule update --init + docker build -t onnxruntime-cuda --build-arg CUDA_VERSION=12.6.1 \ + --build-arg CUDNN_VERSION=9.5.0.50 \ + --build-arg GIT_BRANCH=$(git rev-parse --abbrev-ref HEAD) \ + --build-arg GIT_COMMIT=$(git rev-parse HEAD) \ + --build-arg ONNXRUNTIME_VERSION=$(cat ../VERSION_NUMBER) \ + -f Dockerfile.cuda .. + ``` + To inspect the labels of the built image, run the following: + ``` + docker inspect onnxruntime-cuda + ``` 2. Run the Docker image ``` - docker run --gpus all -it onnxruntime-cuda + docker run --rm --gpus all -it onnxruntime-cuda + ``` or + ``` nvidia-docker run -it onnxruntime-cuda ```