Skip to content

Supported Operators

Karla Saur edited this page Mar 25, 2021 · 41 revisions

scikit-learn

Tree-based operators

  • DecisionTreeClassifier
  • DecisionTreeRegressor
  • ExtraTreesClassifier
  • ExtraTreesRegressor
  • GradientBoostingClassifier
  • GradientBoostingRegressor
  • HistGradientBoostingClassifier
  • HistGradientBoostingRegressor
  • IsolationForest
  • RandomForestClassifier
  • RandomForestRegressor

Linear methods

  • LinearRegression
  • LogisticRegression
  • LogisticRegressionCV
  • RidgeCV
  • SGDClassifier

SVM

  • LinearSVC
  • LinearSVR
  • NuSVC
  • SVC

Clustering

  • KMeans
  • MeanShift

Classifiers: Other

  • BernoulliNB
  • GaussianNB
  • KNeighborsClassifier
  • KNeighborsRegressor
  • MLPClassifier
  • MLPRegressor
  • MultinomialNB

Preprocessing

  • Binarizer
  • LabelEncoder
  • Normalizer
  • OneHotEncoder
  • RobustScaler
  • MaxAbsScaler
  • MinMaxScaler
  • StandardScaler

Matrix Decomposition

  • PCA
  • KernelPCA
  • TruncatedSVD
  • FastICA

Feature Selectors

  • SelectPercentile
  • SelectKBest
  • VarianceThreshold

Feature Pre-processing: One-to-One

  • SimpleImputer
  • MissingIndicator

Feature Pre-processing: Other

  • PolynomialFeatures

Other

  • FeatureUnion
  • ColumnTransformer
  • Pipeline
  • StackingClassifier
  • StackingRegressor

LightGBM

  • LGBMClassifier
  • LGBMRanker
  • LGBMRegressor

XGBoost

  • XGBClassifier
  • XBGRanker
  • XGBRegressor

ONNX.ML

  • Abs
  • Add
  • ArrayFeatureExtractor
  • Binarizer
  • Cast
  • Concat
  • Div
  • Imputer
  • LabelEncoder
  • Less
  • LinearClassifier
  • LinearRegressor
  • Mul
  • Neg
  • Normalizer
  • OneHotEncoder
  • Reshape
  • Sum
  • Scaler
  • SVMClassifier
  • TreeEnsembleClassifier
  • TreeEnsembleRegressor

SparkML

  • Bucketizer
  • VectorAssembler
  • LogisticRegressionModel
Clone this wiki locally