From df4ef0ab698a6ad071b4aad282690eac690b16fd Mon Sep 17 00:00:00 2001 From: BacharL Date: Fri, 10 May 2024 23:53:55 +0300 Subject: [PATCH] Fused adam for HPU (#5500) Co-authored-by: Olatunji Ruwase --- op_builder/hpu/fused_adam.py | 94 ++++++++++++++++++++++++++++++++---- 1 file changed, 85 insertions(+), 9 deletions(-) diff --git a/op_builder/hpu/fused_adam.py b/op_builder/hpu/fused_adam.py index d77228317ddb4..5acb121668e37 100644 --- a/op_builder/hpu/fused_adam.py +++ b/op_builder/hpu/fused_adam.py @@ -4,10 +4,88 @@ # DeepSpeed Team -from .builder import CPUOpBuilder +try: + # is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed + # if successful this also means we're doing a local install and not JIT compile path + from op_builder import __deepspeed__ # noqa: F401 # type: ignore + from op_builder.builder import OpBuilder +except ImportError: + from deepspeed.ops.op_builder.builder import OpBuilder +try: + import torch + import math +except ImportError as e: + pass -class FusedAdamBuilder(CPUOpBuilder): + +class HPUFusedAdam: + htcore = None + is_lazy_mode = None + + @staticmethod + def multi_tensor_adam(chunk_size, noop_flag_buffer, tensor_lists, lr, beta1, beta2, epsilon, step, adam_w_mode, + bias_correction, weight_decay, *args): + + if HPUFusedAdam.htcore is None: + from habana_frameworks.torch import core as htcore + from habana_frameworks.torch.utils.internal import is_lazy + HPUFusedAdam.htcore = htcore + HPUFusedAdam.is_lazy_mode = is_lazy() + + htcore = HPUFusedAdam.htcore + + htcore.step_closure._mark_step_if_lazy() + step_size = lr + if bias_correction: + bias_correction1 = 1.0 - pow(beta1, step) + bias_correction2 = 1.0 - pow(beta2, step) + step_size = step_size * math.sqrt(bias_correction2) / bias_correction1 + + neg_step = -step_size + neg_step_t = (torch.tensor([neg_step], dtype=torch.float, + requires_grad=False).to(tensor_lists[1][0].dtype).to(tensor_lists[1][0].device, + non_blocking=True)) + + weight_decay = weight_decay if adam_w_mode else 0 + + # since lr is fed into the kernel as tensor, perform the scalar multiplication of wd here + # NOTE: TODO if lr is updated every step, then we need to convert it as tensor and + # perform weight decay unconditonally. + modified_wd = 1.0 - weight_decay * lr + + if HPUFusedAdam.is_lazy_mode: + torch.ops.hpu.optimizer_adamw( + tensor_lists[0], + tensor_lists[1], + tensor_lists[2], + tensor_lists[3], + neg_step_t, + beta1, + beta2, + epsilon, + modified_wd, + ) + else: + modified_wd_t = (torch.tensor([modified_wd], dtype=torch.float, requires_grad=False).to( + tensor_lists[1][0].dtype).to(tensor_lists[1][0].device, non_blocking=True)) + torch.ops.hpu.optimizer_adamw( + tensor_lists[0], + tensor_lists[1], + tensor_lists[2], + tensor_lists[3], + neg_step_t, + beta1, + beta2, + epsilon, + modified_wd_t, + modified_wd != 1.0, + ) + + htcore.step_closure._mark_step_if_lazy() + + +class FusedAdamBuilder(OpBuilder): BUILD_VAR = "DS_BUILD_FUSED_ADAM" NAME = "fused_adam" @@ -18,12 +96,10 @@ def absolute_name(self): return f'deepspeed.ops.adam.{self.NAME}_op' def sources(self): - return ['csrc/cpu/adam/fused_adam.cpp', 'csrc/adam/cpu_adam_impl.cpp'] - - def cxx_args(self): - args = super().cxx_args() - args += ['-DENABLE_BFLOAT16'] - return args + return [] def include_paths(self): - return ['csrc/includes'] + return [] + + def load(self, verbose=True): + return HPUFusedAdam