forked from r9y9/gantts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_features_vc.py
121 lines (100 loc) · 4.22 KB
/
prepare_features_vc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
"""Prepare acoustic features for one-to-one voice conversion.
usage:
prepare_features_vc.py [options] <DATA_ROOT> <source_speaker> <target_speaker>
options:
--max_files=<N> Max num files to be collected. [default: 100]
--dst_dir=<d> Destination directory [default: data/cmu_arctic_vc].
--overwrite Overwrite files.
-h, --help show this help message and exit
"""
from __future__ import division, print_function, absolute_import
from docopt import docopt
import numpy as np
from nnmnkwii.datasets import FileSourceDataset
from nnmnkwii import preprocessing as P
from nnmnkwii.preprocessing.alignment import DTWAligner
from nnmnkwii.datasets import cmu_arctic, voice_statistics, vcc2016
import pysptk
import pyworld
from scipy.io import wavfile
from tqdm import tqdm
from os.path import basename, splitext, exists, expanduser, join, dirname
import os
import sys
from hparams import vc as hp
from hparams import hparams_debug_string
# vcc2016.WavFileDataSource and voice_statistics.WavFileDataSource can be
# drop-in replacement. See below for details:
# https://r9y9.github.io/nnmnkwii/latest/references/datasets.html#builtin-data-sources
class MGCSource(cmu_arctic.WavFileDataSource):
def __init__(self, data_root, speakers, max_files=None):
super(MGCSource, self).__init__(data_root, speakers,
max_files=max_files)
self.alpha = None
def collect_features(self, wav_path):
fs, x = wavfile.read(wav_path)
x = x.astype(np.float64)
f0, timeaxis = pyworld.dio(x, fs, frame_period=hp.frame_period)
f0 = pyworld.stonemask(x, f0, timeaxis, fs)
spectrogram = pyworld.cheaptrick(x, f0, timeaxis, fs)
spectrogram = P.trim_zeros_frames(spectrogram)
if self.alpha is None:
self.alpha = pysptk.util.mcepalpha(fs)
mgc = pysptk.sp2mc(spectrogram, order=hp.order, alpha=self.alpha)
# Drop 0-th coefficient
mgc = mgc[:, 1:]
# 50Hz cut-off MS smoothing
hop_length = int(fs * (hp.frame_period * 0.001))
modfs = fs / hop_length
mgc = P.modspec_smoothing(mgc, modfs, cutoff=50)
# Add delta
mgc = P.delta_features(mgc, hp.windows)
return mgc.astype(np.float32)
if __name__ == "__main__":
args = docopt(__doc__)
print("Command line args:\n", args)
DATA_ROOT = args["<DATA_ROOT>"]
source_speaker = args["<source_speaker>"]
target_speaker = args["<target_speaker>"]
max_files = int(args["--max_files"])
dst_dir = args["--dst_dir"]
overwrite = args["--overwrite"]
print(hparams_debug_string(hp))
X_dataset = FileSourceDataset(MGCSource(DATA_ROOT, [source_speaker],
max_files=max_files))
Y_dataset = FileSourceDataset(MGCSource(DATA_ROOT, [target_speaker],
max_files=max_files))
skip_feature_extraction = exists(join(dst_dir, "X")) \
and exists(join(dst_dir, "Y"))
if overwrite:
skip_feature_extraction = False
if skip_feature_extraction:
print("Features seems to be prepared, skipping feature extraction.")
sys.exit(0)
# Create dirs
for speaker, name in [(source_speaker, "X"), (target_speaker, "Y")]:
d = join(dst_dir, name)
print("Destination dir for {}: {}".format(speaker, d))
if not exists(d):
os.makedirs(d)
# Convert to arrays
print("Convert datasets to arrays")
X, Y = X_dataset.asarray(verbose=1), Y_dataset.asarray(verbose=1)
# Alignment
print("Perform alignment")
X, Y = DTWAligner().transform((X, Y))
print("Save features to disk")
for idx, (x, y) in tqdm(enumerate(zip(X, Y))):
# paths
src_name = splitext(basename(X_dataset.collected_files[idx][0]))[0]
tgt_name = splitext(basename(Y_dataset.collected_files[idx][0]))[0]
src_path = join(dst_dir, "X", src_name)
tgt_path = join(dst_dir, "Y", tgt_name)
# Trim and ajast frames
x = P.trim_zeros_frames(x)
y = P.trim_zeros_frames(y)
x, y = P.adjust_frame_lengths(x, y, pad=True, divisible_by=2)
# Save
np.save(src_path, x)
np.save(tgt_path, y)
sys.exit(0)