forked from r9y9/gantts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation_vc.py
177 lines (140 loc) · 5.76 KB
/
evaluation_vc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# coding: utf-8
"""Evaluation script for GAN-based VC models.
usage: evaluation_vc.py [options] <checkpoint> <data_dir> <wav_dir> <outputs_dir>
options:
-h, --help Show this help message and exit
--diffvc Enable DIFF VC.
"""
from docopt import docopt
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
from scipy.io import wavfile
import pysptk
from pysptk.synthesis import Synthesizer, MLSADF
import pyworld
import sys
import os
from os.path import splitext, join, abspath, basename, exists
from nnmnkwii import preprocessing as P
from nnmnkwii.paramgen import unit_variance_mlpg_matrix
from nnmnkwii.datasets import FileSourceDataset, FileDataSource
import gantts
from gantts.multistream import multi_stream_mlpg, get_static_features
from gantts.multistream import get_static_stream_sizes, select_streams
from gantts.seqloss import MaskedMSELoss, sequence_mask
from hparams import vc as hp
from train import NPYDataSource
def test_vc_from_path(model, x, fs, data_mean, data_std, diffvc=True):
model.eval()
hop_length = int(fs * (hp.frame_period * 0.001))
x = x.astype(np.float64)
f0, timeaxis = pyworld.dio(x, fs, frame_period=hp.frame_period)
f0 = pyworld.stonemask(x, f0, timeaxis, fs)
spectrogram = pyworld.cheaptrick(x, f0, timeaxis, fs)
aperiodicity = pyworld.d4c(x, f0, timeaxis, fs)
alpha = pysptk.util.mcepalpha(fs)
mc = pysptk.sp2mc(spectrogram, order=hp.order, alpha=alpha)
c0, mc = mc[:, 0], mc[:, 1:]
static_dim = mc.shape[-1]
mc = P.modspec_smoothing(mc, fs / hop_length, cutoff=50)
mc = P.delta_features(mc, hp.windows).astype(np.float32)
T = mc.shape[0]
inputs = mc[:, :static_dim].copy()
# Normalization
mc_scaled = P.scale(mc, data_mean, data_std)
mc_scaled = Variable(torch.from_numpy(mc_scaled))
lengths = [len(mc_scaled)]
# Add batch axis
mc_scaled = mc_scaled.view(1, -1, mc_scaled.size(-1))
# For MLPG
R = unit_variance_mlpg_matrix(hp.windows, T)
R = torch.from_numpy(R)
# Apply model
if model.include_parameter_generation():
# Case: models include parameter generation in itself
# Mulistream features cannot be used in this case
y_hat, y_hat_static = model(mc_scaled, R, lengths=lengths)
else:
# Case: generic models (can be sequence model)
assert hp.has_dynamic_features is not None
y_hat = model(mc_scaled, lengths=lengths)
y_hat_static = multi_stream_mlpg(
y_hat, R, hp.stream_sizes, hp.has_dynamic_features)
mc_static_pred = y_hat_static.data.cpu().numpy().reshape(-1, static_dim)
# Denormalize
mc_static_pred = P.inv_scale(
mc_static_pred, data_mean[:static_dim], data_std[:static_dim])
outputs = mc_static_pred.copy()
if diffvc:
mc_static_pred = mc_static_pred - mc[:, :static_dim]
mc = np.hstack((c0[:, None], mc_static_pred))
if diffvc:
mc[:, 0] = 0 # remove power coefficients
engine = Synthesizer(MLSADF(order=hp.order, alpha=alpha),
hopsize=hop_length)
b = pysptk.mc2b(mc.astype(np.float64), alpha=alpha)
waveform = engine.synthesis(x, b)
else:
fftlen = pyworld.get_cheaptrick_fft_size(fs)
spectrogram = pysptk.mc2sp(
mc.astype(np.float64), alpha=alpha, fftlen=fftlen)
waveform = pyworld.synthesize(
f0, spectrogram, aperiodicity, fs, hp.frame_period)
return waveform, inputs, outputs
def load_checkpoint(model, optimizer, checkpoint_path):
print("Load checkpoint from: {}".format(checkpoint_path))
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint["state_dict"])
if optimizer is not None:
optimizer.load_state_dict(checkpoint["optimizer"])
def get_wav_files(data_dir, wav_dir, test=False):
if test:
files = NPYDataSource(join(data_dir, "X"), test=True).collect_files()
else:
files = NPYDataSource(join(data_dir, "X"), train=False).collect_files()
wav_files = list(map(
lambda f: join(wav_dir, splitext(basename(f))[0] + ".wav"), files))
return wav_files
if __name__ == "__main__":
args = docopt(__doc__)
print("Command line args:\n", args)
checkpoint_path = args["<checkpoint>"]
data_dir = args["<data_dir>"]
wav_dir = args["<wav_dir>"]
outputs_dir = args["<outputs_dir>"]
diffvc = args["--diffvc"]
# Collect stats
data_mean = np.load(join(data_dir, "data_mean.npy"))
data_var = np.load(join(data_dir, "data_var.npy"))
data_std = np.sqrt(data_var)
if hp.generator_params["in_dim"] is None:
hp.generator_params["in_dim"] = data_mean.shape[-1]
if hp.generator_params["out_dim"] is None:
hp.generator_params["out_dim"] = data_mean.shape[-1]
# Model
model = getattr(gantts.models, hp.generator)(**hp.generator_params)
load_checkpoint(model, None, checkpoint_path)
print(model)
# Generate samples for
# 1. Evaluation set
# 2. Test set
eval_dir = join(outputs_dir, "eval")
test_dir = join(outputs_dir, "test")
if not exists(eval_dir):
os.makedirs(eval_dir)
if not exists(test_dir):
os.makedirs(test_dir)
eval_files = get_wav_files(data_dir, wav_dir, test=False)
test_files = get_wav_files(data_dir, wav_dir, test=True)
for dst_dir, files in [(eval_dir, eval_files), (test_dir, test_files)]:
for path in files:
print(dst_dir, path)
name = splitext(basename(path))[0]
dst_path = join(dst_dir, name + ".wav")
fs, x = wavfile.read(path)
waveform, _, _ = test_vc_from_path(
model, x, fs, data_mean, data_std, diffvc=diffvc)
wavfile.write(dst_path, fs, waveform.astype(np.int16))
sys.exit(0)