forked from zhengqili/MegaDepth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSDR_compute.py
83 lines (63 loc) · 2.71 KB
/
SDR_compute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import time
import torch
import sys
from options.train_options import TrainOptions
opt = TrainOptions().parse() # set CUDA_VISIBLE_DEVICES before import torch
from data.data_loader import CreateDataLoader_TEST
from models.models import create_model
dataset_root = "/phoenix/S6/zl548/"
test_list_dir_l = dataset_root + '/MegaDpeth_code/test_list/landscape/'
input_height = 240
input_width = 320
test_data_loader_l = CreateDataLoader_TEST(dataset_root, test_list_dir_l, input_height, input_width)
test_dataset_l = test_data_loader_l.load_data()
test_dataset_size_l = len(test_data_loader_l)
print('========================= test L images = %d' % test_dataset_size_l)
test_list_dir_p = dataset_root + '/MegaDpeth_code/test_list/portrait/'
input_height = 320
input_width = 240
test_data_loader_p = CreateDataLoader_TEST(dataset_root, test_list_dir_p, input_height, input_width)
test_dataset_p = test_data_loader_p.load_data()
test_dataset_size_p = len(test_data_loader_p)
print('========================= test P images = %d' % test_dataset_size_p)
model = create_model(opt)
batch_size = 32
diw_index = 0
total_steps = 0
best_loss = 100
error_list = [0 , 0, 0]
total_list = [0 , 0, 0]
list_l = range(test_dataset_size_l)
list_p = range(test_dataset_size_p)
def test_SDR(model):
total_loss =0
# count = 0
print("============================= TEST SDR============================")
model.switch_to_eval()
diw_index = 0
for i, data in enumerate(test_dataset_l):
stacked_img = data['img_1']
targets = data['target_1']
error, samples = model.evaluate_SDR(stacked_img, targets)
for j in range(0,3):
error_list[j] += error[j]
total_list[j] += samples[j]
print("EQUAL ", error_list[0]/float(total_list[0]))
print("INEQUAL ", error_list[1]/float(total_list[1]))
print("TOTAL ",error_list[2]/float(total_list[2]))
for i, data in enumerate(test_dataset_p):
stacked_img = data['img_1']
targets = data['target_1']
error, samples = model.evaluate_SDR(stacked_img, targets)
for j in range(0,3):
error_list[j] += error[j]
total_list[j] += samples[j]
print("EQUAL ", error_list[0]/float(total_list[0]))
print("INEQUAL ", error_list[1]/float(total_list[1]))
print("TOTAL ",error_list[2]/float(total_list[2]))
print("=========================================================SDR Summary =====================")
print("Equal SDR:\t" , float(error_list[0])/ float(total_list[0]))
print("Unequal SDR:\t" , float(error_list[1])/ float(total_list[1]))
print("SDR:\t" , float(error_list[2])/ float(total_list[2]))
print("WE ARE TESTING SDR!!!!")
test_SDR(model)