forked from seL4/l4v
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GraphLangLemmas.thy
327 lines (294 loc) · 13 KB
/
GraphLangLemmas.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
theory GraphLangLemmas
imports GraphLang CommonOpsLemmas
begin
definition
get_state_function_call :: "(string \<Rightarrow> graph_function option)
\<Rightarrow> (next_node \<times> state \<times> string) \<Rightarrow> string option"
where
"get_state_function_call Gamma x \<equiv> case x of (NextNode nn, st, fname) \<Rightarrow>
(case Gamma fname of Some gf \<Rightarrow>
(case function_graph gf nn of Some (Call _ fname' _ _) \<Rightarrow> Some fname' | _ \<Rightarrow> None)
| None \<Rightarrow> None)
| _ \<Rightarrow> None"
definition
exec_graph_invariant :: "(string \<Rightarrow> graph_function option) \<Rightarrow> string \<Rightarrow> stack \<Rightarrow> bool"
where
"exec_graph_invariant Gamma gf xs = (xs \<noteq> []
\<and> (\<forall>frame \<in> set (tl xs). get_state_function_call Gamma frame \<noteq> None)
\<and> map (Some o snd o snd) xs = map (get_state_function_call Gamma) (tl xs) @ [Some gf])"
lemma exec_graph_invariant_Cons:
"exec_graph_invariant Gamma fname (x # xs) = (if xs = [] then snd (snd x) = fname
else (get_state_function_call Gamma (hd xs) = Some (snd (snd x))
\<and> exec_graph_invariant Gamma fname xs))"
by (cases xs, auto simp add: exec_graph_invariant_def)
lemma exec_step_invariant:
"(stack, stack') \<in> exec_graph_step Gamma
\<Longrightarrow> exec_graph_invariant Gamma gf stack
\<Longrightarrow> exec_graph_invariant Gamma gf stack'"
by (auto simp: all_exec_graph_step_cases exec_graph_invariant_Cons
get_state_function_call_def
split: graph_function.split_asm)
lemma exec_trace_invariant':
"tr \<in> exec_trace Gamma gf
\<Longrightarrow> (\<forall>stack. tr i = Some stack
\<longrightarrow> exec_graph_invariant Gamma gf stack)"
apply (induct i)
apply (clarsimp simp: exec_trace_def exec_graph_invariant_def)
apply (clarsimp split: next_node.split_asm list.split_asm)
apply (clarsimp simp: exec_trace_def nat_trace_rel_def)
apply (drule_tac x=i in spec, clarsimp)
apply (auto elim: exec_step_invariant)
done
lemmas exec_trace_invariant = exec_trace_invariant'[rule_format]
lemma exec_trace_Nil:
"tr \<in> exec_trace Gamma gf \<Longrightarrow> tr i \<noteq> Some []"
apply safe
apply (drule(1) exec_trace_invariant)
apply (simp add: exec_graph_invariant_def)
done
lemma exec_trace_step_cases:
assumes exec: "tr \<in> exec_trace Gamma gf"
shows "((tr i = None \<and> tr (Suc i) = None))
\<or> (\<exists>state. tr i = Some [state] \<and> fst state \<in> {Ret, Err} \<and> tr (Suc i) = None)
\<or> (tr i \<noteq> None \<and> tr (Suc i) \<noteq> None \<and> (the (tr i), the (tr (Suc i))) \<in> exec_graph_step Gamma)"
using exec exec_trace_Nil[OF exec]
apply (clarsimp simp: exec_trace_def nat_trace_rel_def continuing_def Ball_def)
apply (drule_tac x=i in spec)+
apply (auto split: list.split_asm option.split_asm prod.split_asm next_node.split_asm)[1]
done
definition
reachable_step :: "(nat \<Rightarrow> node option) \<Rightarrow> (next_node \<times> next_node) set"
where
"reachable_step graph = {(s, t). (case s of NextNode i \<Rightarrow>
(case graph i of None \<Rightarrow> False
| Some (Cond l r _) \<Rightarrow> (t = l \<or> t = r)
| Some (Basic c _) \<Rightarrow> t = c
| Some (Call c _ _ _) \<Rightarrow> t = c \<or> t = Err) | _ \<Rightarrow> False)}"
abbreviation
"reachable_step' gf \<equiv> reachable_step (function_graph gf)"
lemma exec_trace_None_dom_subset:
"tr n = None \<Longrightarrow> tr \<in> exec_trace Gamma f
\<Longrightarrow> dom tr \<subseteq> {..< n}"
unfolding exec_trace_def
by (blast elim: CollectE dest: trace_None_dom_subset)
lemma trace_Some_dom_superset:
"tr \<in> nat_trace_rel c R
\<Longrightarrow> tr i = Some v
\<Longrightarrow> {..i} \<subseteq> dom tr"
apply (clarsimp, rule ccontr, clarsimp)
apply (drule(1) trace_None_dom_subset)
apply auto
done
lemma nat_trace_rel_final:
"tr \<in> nat_trace_rel c R
\<Longrightarrow> tr i = Some v
\<Longrightarrow> \<not> c' v
\<Longrightarrow> restrict_map tr {.. i} \<in> nat_trace_rel c' R"
apply (frule(1) trace_Some_dom_superset)
apply (clarsimp simp: nat_trace_rel_def restrict_map_def Suc_le_eq)
apply (drule_tac c="Suc n" in subsetD, auto)
done
lemma trace_None_dom_eq:
"tr n = None \<Longrightarrow> tr \<in> nat_trace_rel cont R
\<Longrightarrow> (\<exists>n'. n' \<le> n \<and> dom tr = {..< n'})"
apply (cases "\<forall>i. tr i = None")
apply (rule_tac x=0 in exI)
apply (simp add: fun_eq_iff)
apply clarsimp
apply (rule_tac x="Suc (Max (dom tr))" in exI)
apply (drule(1) nat_trace_Max_dom_None[rotated, simplified, OF exI])
apply clarsimp
apply (frule(1) trace_None_dom_subset)
apply (rule conjI)
apply auto[1]
apply (rule equalityI)
apply (auto simp: less_Suc_eq_le intro!: Max_ge elim: finite_subset)[1]
apply (clarsimp, rule ccontr, clarsimp simp: less_Suc_eq_le)
apply (drule(1) trace_None_dom_subset)+
apply auto
done
lemma trace_end_eq_Some:
"tr \<in> nat_trace_rel c R
\<Longrightarrow> tr i = Some v
\<Longrightarrow> tr (Suc i) = None
\<Longrightarrow> trace_end tr = Some v"
apply (frule(1) trace_Some_dom_superset)
apply (frule(1) trace_None_dom_eq)
apply (clarsimp simp: le_Suc_eq lessThan_Suc_atMost[symmetric])
apply (simp add: trace_end_def)
apply (subst Max_eqI[where x=i], simp_all)
apply auto
done
lemma trace_end_cut:
"tr \<in> nat_trace_rel c R
\<Longrightarrow> tr i = Some v
\<Longrightarrow> trace_end (restrict_map tr {.. i}) = Some v"
apply (frule(1) trace_Some_dom_superset)
apply (simp add: trace_end_def Int_absorb1)
apply (subst Max_eqI[where x=i], simp_all)
apply (simp add: restrict_map_def)
apply (metis Suc_n_not_le_n)
done
definition
trace_drop_n :: "nat \<Rightarrow> nat \<Rightarrow> trace \<Rightarrow> trace"
where
"trace_drop_n start n_drop tr = (\<lambda>i. if (\<forall>j < i. tr (start + j) \<noteq> None
\<and> continuing (rev (drop n_drop (rev (the (tr (start + j)))))))
then option_map (rev o drop n_drop o rev) (tr (i + start)) else None)"
lemma rev_drop_step:
"(stack, stack') \<in> exec_graph_step Gamma
\<Longrightarrow> continuing (rev (drop k (rev stack)))
\<Longrightarrow> (rev (drop k (rev stack)), rev (drop k (rev stack'))) \<in> exec_graph_step Gamma"
apply (subgoal_tac "\<exists>xs ys. stack = xs @ ys \<and> k = length ys")
apply clarsimp
apply (frule(1) exec_graph_step_stack_extend[THEN iffD1])
apply clarsimp
apply (rule_tac x="take (length stack - k) stack" in exI)
apply (rule_tac x="drop (length stack - k) stack" in exI)
apply (cases "length (rev (drop k (rev stack)))")
apply simp
apply simp
done
lemma rev_drop_continuing:
"continuing (rev (drop k (rev stack))) \<Longrightarrow> continuing stack"
by (simp add: continuing_def split: list.split next_node.split,
auto simp: drop_Cons split: nat.split_asm)
lemma all_less_Suc_eq:
"(\<forall>x < Suc i. P x) = (P i \<and> (\<forall>x < i. P x))"
by (auto simp: less_Suc_eq)
lemma exec_trace_drop_n_Cons:
assumes tr: "tr \<in> exec_trace Gamma fn" "Gamma fn'' = Some gf"
shows "tr i = Some ((NextNode n, st, fn'') # xs)
\<Longrightarrow> function_graph gf n = Some (Call nn fn' inps outps)
\<Longrightarrow> Gamma fn' = Some gf'
\<Longrightarrow> trace_drop_n (Suc i) (Suc (length xs)) tr \<in> exec_trace Gamma fn'"
using tr
apply (clarsimp simp: exec_trace_def)
apply (intro conjI)
apply (simp add: trace_drop_n_def)
apply (cut_tac exec_trace_step_cases[where i=i, OF tr(1)])
apply (clarsimp simp: all_exec_graph_step_cases exec_graph_invariant_Cons
split: graph_function.split_asm)
apply (clarsimp simp: nat_trace_rel_def trace_drop_n_def
all_less_Suc_eq
split del: if_split)
apply (cut_tac i="Suc i + na" in exec_trace_Nil[OF tr(1)])
apply (drule_tac x="Suc i + na" in spec)+
apply (clarsimp simp: field_simps)
apply (safe, simp_all)
apply (safe intro!: rev_drop_step)
apply (auto dest!: rev_drop_continuing)
done
lemma exec_trace_drop_n:
assumes tr: "tr \<in> exec_trace Gamma fn" "Gamma fn = Some gf"
shows "tr i = Some [(NextNode n, st, fn'')]
\<Longrightarrow> function_graph gf n = Some (Call nn fn' inps outps)
\<Longrightarrow> Gamma fn' = Some gf'
\<Longrightarrow> trace_drop_n (Suc i) 1 tr \<in> exec_trace Gamma fn'"
apply (frule exec_trace_invariant[OF tr(1)])
apply (simp add: exec_graph_invariant_Cons)
apply (drule(2) exec_trace_drop_n_Cons[OF tr])
apply simp
done
lemma exec_trace_drop_n_rest_Cons:
"tr \<in> exec_trace Gamma fn
\<Longrightarrow> tr i = Some ((NextNode n, st, fn'') # xs)
\<Longrightarrow> Gamma fn'' = Some gf
\<Longrightarrow> function_graph gf n = Some (Call nn fn' inps outps)
\<Longrightarrow> Gamma fn' = Some gf'
\<Longrightarrow> (\<forall>stk. trace_drop_n (Suc i) (Suc (length xs)) tr k = Some stk
\<longrightarrow> tr (Suc i + k) = Some (stk @ (NextNode n, st, fn'') # xs))"
proof (induct k)
case 0 show ?case using 0
apply (clarsimp simp: trace_drop_n_def)
apply (frule_tac i=i in exec_trace_step_cases)
apply (clarsimp simp: exec_graph_step_def exec_graph_invariant_Cons
split: graph_function.split_asm)
done
next
case (Suc k)
have rev_drop_eq: "\<And>xs ys n. length ys = n
\<Longrightarrow> (xs = rev (drop n (rev xs)) @ ys)
= (\<exists>zs. xs = zs @ ys)"
by auto
show ?case using Suc.prems Suc.hyps
apply (clarsimp simp: trace_drop_n_def field_simps)
apply (frule_tac i="Suc k + i" in exec_trace_step_cases)
apply (clarsimp simp: field_simps all_less_Suc_eq rev_drop_eq)
apply (clarsimp simp: exec_graph_step_stack_extend)
done
qed
lemma exec_trace_drop_n_rest:
"tr \<in> exec_trace Gamma fn \<Longrightarrow> Gamma fn = Some gf
\<Longrightarrow> tr i = Some [(NextNode n, st, fn'')]
\<Longrightarrow> function_graph gf n = Some (Call nn fn' inps outps)
\<Longrightarrow> Gamma fn' = Some gf'
\<Longrightarrow> (\<forall>stk. trace_drop_n (Suc i) 1 tr k = Some stk
\<longrightarrow> tr (Suc i + k) = Some (stk @ [(NextNode n, st, fn'')]))"
apply (frule(1) exec_trace_invariant)
apply (clarsimp simp: exec_graph_invariant_Cons)
apply (drule(4) exec_trace_drop_n_rest_Cons)
apply auto
done
lemma trace_drop_n_init:
"tr \<in> exec_trace Gamma fn \<Longrightarrow> Gamma fn = Some f
\<Longrightarrow> function_graph f n = Some (Call nn fname inputs outputs)
\<Longrightarrow> Gamma fname = Some f'
\<Longrightarrow> tr i = Some [(NextNode n, st, fn')]
\<Longrightarrow> trace_drop_n (Suc i) 1 tr 0 = Some [(NextNode (entry_point f'),
init_vars (function_inputs f') inputs st, fname)]"
apply (frule(1) exec_trace_invariant)
apply (clarsimp simp: exec_graph_invariant_Cons)
apply (frule_tac i=i in exec_trace_step_cases, clarsimp)
apply (clarsimp simp: all_exec_graph_step_cases trace_drop_n_def)
done
lemma exec_trace_init:
"tr \<in> exec_trace Gamma fn
\<Longrightarrow> \<exists>st gf. Gamma fn = Some gf \<and> tr 0 = Some [(NextNode (entry_point gf), st, fn)]"
by (clarsimp simp: exec_trace_def)
lemma dom_Max_None:
"tr \<in> exec_trace Gamma f \<Longrightarrow> (tr (Max (dom tr)) \<noteq> None)"
apply (rule notI)
apply (frule(1) exec_trace_None_dom_subset)
apply (cases "dom tr = {}")
apply (clarsimp dest!: exec_trace_init)
apply (drule Max_in[rotated])
apply (simp add: finite_subset)
apply clarsimp
done
lemma trace_end_trace_drop_n_None:
"trace_end (trace_drop_n i j tr) = None \<Longrightarrow> tr \<in> exec_trace Gamma f
\<Longrightarrow> trace_drop_n i j tr \<in> exec_trace Gamma f'
\<Longrightarrow> trace_end tr = None"
apply (clarsimp simp: trace_end_def dom_Max_None split: if_split_asm)
apply (rule ccontr, simp)
apply (drule(1) exec_trace_None_dom_subset)
apply (drule_tac x="n + i + 1" in spec)
apply (clarsimp simp: trace_drop_n_def split: if_split_asm)
apply auto[1]
done
lemma trace_end_trace_drop_n_Some:
"trace_end (trace_drop_n (Suc i) (Suc 0) tr) = Some [(Ret, st', dontcare)]
\<Longrightarrow> tr \<in> exec_trace Gamma fn \<Longrightarrow> Gamma fn = Some f
\<Longrightarrow> function_graph f n = Some (Call nn fname inputs outputs)
\<Longrightarrow> Gamma fname = Some f'
\<Longrightarrow> tr i = Some [(NextNode n, st, fn')]
\<Longrightarrow> \<exists>j. tr (Suc i + j) = Some [(nn, return_vars (function_outputs f') outputs st' st, fn)]
"
apply (frule(4) exec_trace_drop_n)
apply (drule trace_end_SomeD, fastforce simp add: exec_trace_def)
apply clarsimp
apply (frule(4) exec_trace_drop_n_rest, simp, drule spec, drule(1) mp)
apply simp
apply (frule(1) exec_trace_invariant[where stack="[a, b]" for a b])
apply (clarsimp simp: exec_graph_invariant_Cons get_state_function_call_def)
apply (frule_tac i="Suc i + na" in exec_trace_step_cases, clarsimp)
apply (clarsimp simp: all_exec_graph_step_cases)
apply (metis add_Suc_right)
done
end