forked from seL4/l4v
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIslands_S.thy
58 lines (49 loc) · 1.83 KB
/
Islands_S.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
(*
* Copyright 2014, General Dynamics C4 Systems
*
* SPDX-License-Identifier: GPL-2.0-only
*)
(* Title: Confinement_S
* Description: Rephrasing of the confinement proof using the concept of islands.
*)
theory Islands_S
imports Confine_S
begin
definition
island :: "state \<Rightarrow> entity_id \<Rightarrow> entity_id set" where
"island s x \<equiv> {e\<^sub>i. s \<turnstile> x \<leftrightarrow>* e\<^sub>i}"
definition
island_caps :: "state \<Rightarrow> entity_id \<Rightarrow> cap set" where
"island_caps s x \<equiv> \<Union>(caps_of s ` island s x)"
lemma island_caps_def2:
"island_caps s x \<equiv> \<Union> e \<in> island s x. caps_of s e"
by(simp add: island_caps_def)
lemma island_caps_def3:
"island_caps s x = \<Union>(direct_caps_of s ` island s x)"
apply (clarsimp simp: island_caps_def)
apply rule
apply (clarsimp simp: island_def caps_of_def)
apply (drule store_connected_directly_tgs_connected)
apply (metis directly_tgs_connected_rtrancl_into_rtrancl)
apply (fastforce simp: caps_of_def store_connected_def)
done
lemma island_caps_dom:
"island_caps s e\<^sub>x \<le>cap c =
(\<forall>e\<^sub>i. (e\<^sub>x, e\<^sub>i) \<in> tgs_connected s \<longrightarrow> caps_of s e\<^sub>i \<le>cap c)"
by (auto simp add: island_caps_def caps_dominated_by_def island_def)
lemma authority_confinement_islands:
"\<lbrakk>s' \<in> execute cmds s;
island_caps s x \<le>cap c\<rbrakk>
\<Longrightarrow> island_caps s' x \<le>cap c"
apply (simp add: island_caps_dom)
apply clarsimp
apply (frule (1) tgs_connected_preserved)
apply (subst (asm) tgs_connected_comm_eq)
apply (erule authority_confinement)
apply clarsimp
apply (erule_tac x=e\<^sub>i' in allE)
apply (erule impE)
apply (metis (hide_lams, no_types) tgs_connected_comm_eq tgs_connected_def rtrancl_trans)
apply clarsimp
done
end