forked from seL4/l4v
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSeparation_Algebra.thy
1133 lines (860 loc) · 40 KB
/
Separation_Algebra.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
(* Authors: Gerwin Klein and Rafal Kolanski, 2012
Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
Rafal Kolanski <rafal.kolanski at nicta.com.au>
*)
chapter "Abstract Separation Algebra"
theory Separation_Algebra
imports
Arbitrary_Comm_Monoid
"HOL-Library.Adhoc_Overloading"
begin
text \<open>This theory is the main abstract separation algebra development\<close>
section \<open>Input syntax for lifting boolean predicates to separation predicates\<close>
abbreviation (input)
pred_and :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "and" 35) where
"a and b \<equiv> \<lambda>s. a s \<and> b s"
abbreviation (input)
pred_or :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "or" 30) where
"a or b \<equiv> \<lambda>s. a s \<or> b s"
abbreviation (input)
pred_not :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" ("not _" [40] 40) where
"not a \<equiv> \<lambda>s. \<not>a s"
abbreviation (input)
pred_imp :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "imp" 25) where
"a imp b \<equiv> \<lambda>s. a s \<longrightarrow> b s"
abbreviation (input)
pred_K :: "'b \<Rightarrow> 'a \<Rightarrow> 'b" ("\<langle>_\<rangle>") where
"\<langle>f\<rangle> \<equiv> \<lambda>s. f"
abbreviation (input)
pred_ex :: "('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (binder "EXS " 10) where
"EXS x. P x \<equiv> \<lambda>s. \<exists>x. P x s"
abbreviation (input)
pred_all :: "('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (binder "ALLS " 10) where
"ALLS x. P x \<equiv> \<lambda>s. \<forall>x. P x s"
section \<open>Associative/Commutative Monoid Basis of Separation Algebras\<close>
class pre_sep_algebra = zero + plus +
fixes sep_disj :: "'a => 'a => bool" (infix "##" 60)
assumes sep_disj_zero [simp]: "x ## 0"
assumes sep_disj_commuteI: "x ## y \<Longrightarrow> y ## x"
assumes sep_add_zero [simp]: "x + 0 = x"
assumes sep_add_commute: "x ## y \<Longrightarrow> x + y = y + x"
assumes sep_add_assoc:
"\<lbrakk> x ## y; y ## z; x ## z \<rbrakk> \<Longrightarrow> (x + y) + z = x + (y + z)"
begin
lemma sep_disj_commute: "x ## y = y ## x"
by (blast intro: sep_disj_commuteI)
lemma sep_add_left_commute:
assumes a: "a ## b" "b ## c" "a ## c"
shows "b + (a + c) = a + (b + c)" (is "?lhs = ?rhs")
proof -
have "?lhs = b + a + c" using a
by (simp add: sep_add_assoc[symmetric] sep_disj_commute)
also have "... = a + b + c" using a
by (simp add: sep_add_commute sep_disj_commute)
also have "... = ?rhs" using a
by (simp add: sep_add_assoc sep_disj_commute)
finally show ?thesis .
qed
lemmas sep_add_ac = sep_add_assoc sep_add_commute sep_add_left_commute
sep_disj_commute (* nearly always necessary *)
end
section \<open>Separation Algebra as Defined by Calcagno et al.\<close>
class sep_algebra = pre_sep_algebra +
assumes sep_disj_addD1: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## y"
assumes sep_disj_addI1: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x + y ## z"
begin
subsection \<open>Basic Construct Definitions and Abbreviations\<close>
(* Lower precedence than pred_conj, otherwise "P \<and>* Q and R" is ambiguous,
* (noting that Isabelle turns "(P \<and>* Q) and R" into "P \<and>* Q and R").
*)
definition
sep_conj :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixr "**" 36)
where
"P ** Q \<equiv> \<lambda>h. \<exists>x y. x ## y \<and> h = x + y \<and> P x \<and> Q y"
notation
sep_conj (infixr "\<and>*" 36)
notation (latex output)
sep_conj (infixr "\<and>\<^sup>*" 36)
definition
sep_empty :: "'a \<Rightarrow> bool" ("\<box>") where
"\<box> \<equiv> \<lambda>h. h = 0"
definition
sep_impl :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixr "\<longrightarrow>*" 25)
where
"P \<longrightarrow>* Q \<equiv> \<lambda>h. \<forall>h'. h ## h' \<and> P h' \<longrightarrow> Q (h + h')"
definition
sep_substate :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<preceq>" 60) where
"x \<preceq> y \<equiv> \<exists>z. x ## z \<and> x + z = y"
(* We want these to be abbreviations not definitions, because basic True and
False will occur by simplification in sep_conj terms *)
abbreviation
"sep_true \<equiv> \<langle>True\<rangle>"
abbreviation
"sep_false \<equiv> \<langle>False\<rangle>"
subsection \<open>Disjunction/Addition Properties\<close>
lemma disjoint_zero_sym [simp]: "0 ## x"
by (simp add: sep_disj_commute)
lemma sep_add_zero_sym [simp]: "0 + x = x"
by (simp add: sep_add_commute)
lemma sep_disj_addD2: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## z"
by (metis sep_add_commute sep_disj_addD1 sep_disj_commuteI)
lemma sep_disj_addD: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## y \<and> x ## z"
by (metis sep_disj_addD1 sep_disj_addD2)
lemma sep_add_disjD: "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> x ## z \<and> y ## z"
by (metis sep_disj_addD sep_disj_commuteI)
lemma sep_disj_addI2:
"\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x + z ## y"
using sep_add_commute sep_disj_addI1 sep_disj_commuteI by presburger
lemma sep_add_disjI1:
"\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> x + z ## y"
by (metis sep_add_commute sep_disj_addI1 sep_disj_commuteI sep_add_disjD)
lemma sep_add_disjI2:
"\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> z + y ## x"
by (metis sep_add_commute sep_disj_addI1 sep_disj_commuteI sep_add_disjD)
lemma sep_disj_addI3:
"x + y ## z \<Longrightarrow> x ## y \<Longrightarrow> x ## y + z"
by (metis sep_add_commute sep_disj_addI1 sep_disj_commuteI sep_add_disjD)
lemma sep_disj_add:
"\<lbrakk> y ## z; x ## y \<rbrakk> \<Longrightarrow> x ## y + z = x + y ## z"
by (metis sep_disj_addI1 sep_disj_addI3)
subsection \<open>Substate Properties\<close>
lemma sep_substate_disj_add:
"x ## y \<Longrightarrow> x \<preceq> x + y"
unfolding sep_substate_def by blast
lemma sep_substate_disj_add':
"x ## y \<Longrightarrow> x \<preceq> y + x"
by (simp add: sep_add_ac sep_substate_disj_add)
subsection \<open>Separating Conjunction Properties\<close>
lemma sep_conjD:
"(P \<and>* Q) h \<Longrightarrow> \<exists>x y. x ## y \<and> h = x + y \<and> P x \<and> Q y"
by (simp add: sep_conj_def)
lemma sep_conjE:
"\<lbrakk> (P ** Q) h; \<And>x y. \<lbrakk> P x; Q y; x ## y; h = x + y \<rbrakk> \<Longrightarrow> X \<rbrakk> \<Longrightarrow> X"
by (auto simp: sep_conj_def)
lemma sep_conjI:
"\<lbrakk> P x; Q y; x ## y; h = x + y \<rbrakk> \<Longrightarrow> (P ** Q) h"
by (auto simp: sep_conj_def)
lemma sep_conj_commuteI:
"(P ** Q) h \<Longrightarrow> (Q ** P) h"
by (auto intro!: sep_conjI elim!: sep_conjE simp: sep_add_ac)
lemma sep_conj_commute:
"(P ** Q) = (Q ** P)"
by (rule ext) (auto intro: sep_conj_commuteI)
lemma sep_conj_assoc:
"((P ** Q) ** R) = (P ** Q ** R)" (is "?lhs = ?rhs")
proof (rule ext, rule iffI)
fix h
assume a: "?lhs h"
then obtain x y z where "P x" and "Q y" and "R z"
and "x ## y" and "x ## z" and "y ## z" and "x + y ## z"
and "h = x + y + z"
by (auto dest!: sep_conjD dest: sep_add_disjD)
moreover
then have "x ## y + z"
by (simp add: sep_disj_add)
ultimately
show "?rhs h"
by (auto simp: sep_add_ac intro!: sep_conjI)
next
fix h
assume a: "?rhs h"
then obtain x y z where "P x" and "Q y" and "R z"
and "x ## y" and "x ## z" and "y ## z" and "x ## y + z"
and "h = x + y + z"
by (fastforce elim!: sep_conjE simp: sep_add_ac dest: sep_disj_addD)
thus "?lhs h"
by (metis sep_conj_def sep_disj_addI1)
qed
lemma sep_conj_impl:
"\<lbrakk> (P ** Q) h; \<And>h. P h \<Longrightarrow> P' h; \<And>h. Q h \<Longrightarrow> Q' h \<rbrakk> \<Longrightarrow> (P' ** Q') h"
by (erule sep_conjE, auto intro!: sep_conjI)
lemma sep_conj_impl1:
assumes P: "\<And>h. P h \<Longrightarrow> I h"
shows "(P ** R) h \<Longrightarrow> (I ** R) h"
by (auto intro: sep_conj_impl P)
lemma sep_globalise:
"\<lbrakk> (P ** R) h; (\<And>h. P h \<Longrightarrow> Q h) \<rbrakk> \<Longrightarrow> (Q ** R) h"
by (fast elim: sep_conj_impl)
lemma sep_conj_trivial_strip1:
"Q = R \<Longrightarrow> (P ** Q) = (P ** R)" by simp
lemma sep_conj_trivial_strip2:
"Q = R \<Longrightarrow> (Q ** P) = (R ** P)" by simp
lemma disjoint_subheaps_exist:
"\<exists>x y. x ## y \<and> h = x + y"
by (rule_tac x=0 in exI, auto)
lemma sep_conj_left_commute: (* for permutative rewriting *)
"(P ** (Q ** R)) = (Q ** (P ** R))" (is "?x = ?y")
proof -
have "?x = ((Q ** R) ** P)" by (simp add: sep_conj_commute)
also have "\<dots> = (Q ** (R ** P))" by (subst sep_conj_assoc, simp)
finally show ?thesis by (simp add: sep_conj_commute)
qed
lemmas sep_conj_ac = sep_conj_commute sep_conj_assoc sep_conj_left_commute
lemma sep_empty_zero [simp,intro!]: "\<box> 0"
by (simp add: sep_empty_def)
subsection \<open>Properties of @{text sep_true} and @{text sep_false}\<close>
lemma sep_conj_sep_true:
"P h \<Longrightarrow> (P ** sep_true) h"
by (simp add: sep_conjI[where y=0])
lemma sep_conj_sep_true':
"P h \<Longrightarrow> (sep_true ** P) h"
by (simp add: sep_conjI[where x=0])
lemma sep_conj_true [simp]:
"(sep_true ** sep_true) = sep_true"
unfolding sep_conj_def
by (auto intro: disjoint_subheaps_exist)
lemma sep_conj_false_right [simp]:
"(P ** sep_false) = sep_false"
by (force elim: sep_conjE)
lemma sep_conj_false_left [simp]:
"(sep_false ** P) = sep_false"
by (subst sep_conj_commute) (rule sep_conj_false_right)
subsection \<open>Properties of @{const sep_empty}\<close>
lemma sep_conj_empty [simp]:
"(P ** \<box>) = P"
by (simp add: sep_conj_def sep_empty_def)
lemma sep_conj_empty'[simp]:
"(\<box> ** P) = P"
by (subst sep_conj_commute, rule sep_conj_empty)
lemma sep_conj_sep_emptyI:
"P h \<Longrightarrow> (P ** \<box>) h"
by simp
lemma sep_conj_sep_emptyE:
"\<lbrakk> P s; (P ** \<box>) s \<Longrightarrow> (Q ** R) s \<rbrakk> \<Longrightarrow> (Q ** R) s"
by simp
subsection \<open>Properties of top (@{text sep_true})\<close>
lemma sep_conj_true_P [simp]:
"(sep_true ** (sep_true ** P)) = (sep_true ** P)"
by (simp add: sep_conj_assoc[symmetric])
lemma sep_conj_disj:
"((P or Q) ** R) = ((P ** R) or (Q ** R))"
by (rule ext, auto simp: sep_conj_def)
lemma sep_conj_sep_true_left:
"(P ** Q) h \<Longrightarrow> (sep_true ** Q) h"
by (erule sep_conj_impl, simp+)
lemma sep_conj_sep_true_right:
"(P ** Q) h \<Longrightarrow> (P ** sep_true) h"
by (subst (asm) sep_conj_commute, drule sep_conj_sep_true_left,
simp add: sep_conj_ac)
subsection \<open>Separating Conjunction with Quantifiers\<close>
lemma sep_conj_conj:
"((P and Q) ** R) h \<Longrightarrow> ((P ** R) and (Q ** R)) h"
by (force intro: sep_conjI elim!: sep_conjE)
lemma sep_conj_exists1:
"((EXS x. P x) ** Q) = (EXS x. (P x ** Q))"
by (force intro: sep_conjI elim: sep_conjE)
lemma sep_conj_exists2:
"(P ** (EXS x. Q x)) = (EXS x. P ** Q x)"
by (force intro!: sep_conjI elim!: sep_conjE)
lemmas sep_conj_exists = sep_conj_exists1 sep_conj_exists2
lemma sep_conj_spec1:
"((ALLS x. P x) ** Q) h \<Longrightarrow> (P x ** Q) h"
by (force intro: sep_conjI elim: sep_conjE)
lemma sep_conj_spec2:
"(P ** (ALLS x. Q x)) h \<Longrightarrow> (P ** Q x) h"
by (force intro: sep_conjI elim: sep_conjE)
lemmas sep_conj_spec = sep_conj_spec1 sep_conj_spec2
subsection \<open>Properties of Separating Implication\<close>
lemma sep_implI:
assumes a: "\<And>h'. \<lbrakk> h ## h'; P h' \<rbrakk> \<Longrightarrow> Q (h + h')"
shows "(P \<longrightarrow>* Q) h"
unfolding sep_impl_def by (auto elim: a)
lemma sep_implD:
"(x \<longrightarrow>* y) h \<Longrightarrow> \<forall>h'. h ## h' \<and> x h' \<longrightarrow> y (h + h')"
by (force simp: sep_impl_def)
lemma sep_implE:
"(x \<longrightarrow>* y) h \<Longrightarrow> (\<forall>h'. h ## h' \<and> x h' \<longrightarrow> y (h + h') \<Longrightarrow> Q) \<Longrightarrow> Q"
by (auto dest: sep_implD)
lemma sep_impl_sep_true [simp]:
"(P \<longrightarrow>* sep_true) = sep_true"
by (force intro!: sep_implI)
lemma sep_impl_sep_false [simp]:
"(sep_false \<longrightarrow>* P) = sep_true"
by (force intro!: sep_implI)
lemma sep_impl_sep_true_P:
"(sep_true \<longrightarrow>* P) h \<Longrightarrow> P h"
by (clarsimp dest!: sep_implD elim!: allE[where x=0])
lemma sep_impl_sep_true_false [simp]:
"(sep_true \<longrightarrow>* sep_false) = sep_false"
by (force dest: sep_impl_sep_true_P)
lemma sep_conj_sep_impl:
"\<lbrakk> P h; \<And>h. (P ** Q) h \<Longrightarrow> R h \<rbrakk> \<Longrightarrow> (Q \<longrightarrow>* R) h"
proof (rule sep_implI)
fix h' h
assume "P h" and "h ## h'" and "Q h'"
hence "(P ** Q) (h + h')" by (force intro: sep_conjI)
moreover assume "\<And>h. (P ** Q) h \<Longrightarrow> R h"
ultimately show "R (h + h')" by simp
qed
lemma sep_conj_sep_impl2:
"\<lbrakk> (P ** Q) h; \<And>h. P h \<Longrightarrow> (Q \<longrightarrow>* R) h \<rbrakk> \<Longrightarrow> R h"
by (force dest: sep_implD elim: sep_conjE)
lemma sep_conj_sep_impl_sep_conj2:
"(P ** R) h \<Longrightarrow> (P ** (Q \<longrightarrow>* (Q ** R))) h"
by (erule (1) sep_conj_impl, erule sep_conj_sep_impl, simp add: sep_conj_ac)
subsection \<open>Pure assertions\<close>
definition
pure :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
"pure P \<equiv> \<forall>h h'. P h = P h'"
lemma pure_sep_true:
"pure sep_true"
by (simp add: pure_def)
lemma pure_sep_false:
"pure sep_false"
by (simp add: pure_def)
lemma pure_split:
"pure P = (P = sep_true \<or> P = sep_false)"
by (force simp: pure_def)
lemma pure_sep_conj:
"\<lbrakk> pure P; pure Q \<rbrakk> \<Longrightarrow> pure (P \<and>* Q)"
by (force simp: pure_split)
lemma pure_sep_impl:
"\<lbrakk> pure P; pure Q \<rbrakk> \<Longrightarrow> pure (P \<longrightarrow>* Q)"
by (force simp: pure_split)
lemma pure_conj_sep_conj:
"\<lbrakk> (P and Q) h; pure P \<or> pure Q \<rbrakk> \<Longrightarrow> (P \<and>* Q) h"
by (metis pure_def sep_add_zero sep_conjI sep_conj_commute sep_disj_zero)
lemma pure_sep_conj_conj:
"\<lbrakk> (P \<and>* Q) h; pure P; pure Q \<rbrakk> \<Longrightarrow> (P and Q) h"
by (force simp: pure_split)
lemma pure_conj_sep_conj_assoc:
"pure P \<Longrightarrow> ((P and Q) \<and>* R) = (P and (Q \<and>* R))"
by (auto simp: pure_split)
lemma pure_sep_impl_impl:
"\<lbrakk> (P \<longrightarrow>* Q) h; pure P \<rbrakk> \<Longrightarrow> P h \<longrightarrow> Q h"
by (force simp: pure_split dest: sep_impl_sep_true_P)
lemma pure_impl_sep_impl:
"\<lbrakk> P h \<longrightarrow> Q h; pure P; pure Q \<rbrakk> \<Longrightarrow> (P \<longrightarrow>* Q) h"
by (force simp: pure_split)
lemma pure_conj_right: "(Q \<and>* (\<langle>P'\<rangle> and Q')) = (\<langle>P'\<rangle> and (Q \<and>* Q'))"
by (rule ext, rule, rule, clarsimp elim!: sep_conjE)
(erule sep_conj_impl, auto)
lemma pure_conj_right': "(Q \<and>* (P' and \<langle>Q'\<rangle>)) = (\<langle>Q'\<rangle> and (Q \<and>* P'))"
by (simp add: conj_comms pure_conj_right)
lemma pure_conj_left: "((\<langle>P'\<rangle> and Q') \<and>* Q) = (\<langle>P'\<rangle> and (Q' \<and>* Q))"
by (simp add: pure_conj_right sep_conj_ac)
lemma pure_conj_left': "((P' and \<langle>Q'\<rangle>) \<and>* Q) = (\<langle>Q'\<rangle> and (P' \<and>* Q))"
by (subst conj_comms, subst pure_conj_left, simp)
lemmas pure_conj = pure_conj_right pure_conj_right' pure_conj_left
pure_conj_left'
declare pure_conj[simp add]
subsection \<open>Intuitionistic assertions\<close>
definition intuitionistic :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
"intuitionistic P \<equiv> \<forall>h h'. P h \<and> h \<preceq> h' \<longrightarrow> P h'"
lemma intuitionisticI:
"(\<And>h h'. \<lbrakk> P h; h \<preceq> h' \<rbrakk> \<Longrightarrow> P h') \<Longrightarrow> intuitionistic P"
by (unfold intuitionistic_def, fast)
lemma intuitionisticD:
"\<lbrakk> intuitionistic P; P h; h \<preceq> h' \<rbrakk> \<Longrightarrow> P h'"
by (unfold intuitionistic_def, fast)
lemma pure_intuitionistic:
"pure P \<Longrightarrow> intuitionistic P"
by (clarsimp simp: intuitionistic_def pure_def, fast)
lemma intuitionistic_conj:
"\<lbrakk> intuitionistic P; intuitionistic Q \<rbrakk> \<Longrightarrow> intuitionistic (P and Q)"
by (force intro: intuitionisticI dest: intuitionisticD)
lemma intuitionistic_disj:
"\<lbrakk> intuitionistic P; intuitionistic Q \<rbrakk> \<Longrightarrow> intuitionistic (P or Q)"
by (force intro: intuitionisticI dest: intuitionisticD)
lemma intuitionistic_forall:
"(\<And>x. intuitionistic (P x)) \<Longrightarrow> intuitionistic (ALLS x. P x)"
by (force intro: intuitionisticI dest: intuitionisticD)
lemma intuitionistic_exists:
"(\<And>x. intuitionistic (P x)) \<Longrightarrow> intuitionistic (EXS x. P x)"
by (force intro: intuitionisticI dest: intuitionisticD)
lemma intuitionistic_sep_conj_sep_true:
"intuitionistic (sep_true \<and>* P)"
proof (rule intuitionisticI)
fix h h' r
assume a: "(sep_true \<and>* P) h"
then obtain x y where P: "P y" and h: "h = x + y" and xyd: "x ## y"
by - (drule sep_conjD, clarsimp)
moreover assume a2: "h \<preceq> h'"
then obtain z where h': "h' = h + z" and hzd: "h ## z"
by (clarsimp simp: sep_substate_def)
moreover have "(P \<and>* sep_true) (y + (x + z))"
using P h hzd xyd
by (metis sep_add_disjI1 sep_disj_commute sep_conjI)
ultimately show "(sep_true \<and>* P) h'" using hzd
by (auto simp: sep_conj_commute sep_add_ac dest!: sep_disj_addD)
qed
lemma intuitionistic_sep_impl_sep_true:
"intuitionistic (sep_true \<longrightarrow>* P)"
proof (rule intuitionisticI)
fix h h'
assume imp: "(sep_true \<longrightarrow>* P) h" and hh': "h \<preceq> h'"
from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
by (clarsimp simp: sep_substate_def)
show "(sep_true \<longrightarrow>* P) h'" using imp h' hzd
apply (clarsimp dest!: sep_implD)
apply (metis sep_add_assoc sep_add_disjD sep_disj_addI3 sep_implI)
done
qed
lemma intuitionistic_sep_conj:
assumes ip: "intuitionistic (P::('a \<Rightarrow> bool))"
shows "intuitionistic (P \<and>* Q)"
proof (rule intuitionisticI)
fix h h'
assume sc: "(P \<and>* Q) h" and hh': "h \<preceq> h'"
from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
by (clarsimp simp: sep_substate_def)
from sc obtain x y where px: "P x" and qy: "Q y"
and h: "h = x + y" and xyd: "x ## y"
by (clarsimp simp: sep_conj_def)
have "x ## z" using hzd h xyd
by (metis sep_add_disjD)
with ip px have "P (x + z)"
by (fastforce elim: intuitionisticD sep_substate_disj_add)
thus "(P \<and>* Q) h'" using h' h hzd qy xyd
by (metis (full_types) sep_add_commute sep_add_disjD sep_add_disjI2
sep_add_left_commute sep_conjI)
qed
lemma intuitionistic_sep_impl:
assumes iq: "intuitionistic Q"
shows "intuitionistic (P \<longrightarrow>* Q)"
proof (rule intuitionisticI)
fix h h'
assume imp: "(P \<longrightarrow>* Q) h" and hh': "h \<preceq> h'"
from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
by (clarsimp simp: sep_substate_def)
{
fix x
assume px: "P x" and hzx: "h + z ## x"
have "h + x \<preceq> h + x + z" using hzx hzd
by (metis sep_add_disjI1 sep_substate_def)
with imp hzd iq px hzx
have "Q (h + z + x)"
by (metis intuitionisticD sep_add_assoc sep_add_ac sep_add_disjD sep_implE)
}
with imp h' hzd iq show "(P \<longrightarrow>* Q) h'"
by (fastforce intro: sep_implI)
qed
lemma strongest_intuitionistic:
"\<not>(\<exists>Q. (\<forall>h. (Q h \<longrightarrow> (P \<and>* sep_true) h)) \<and> intuitionistic Q \<and> Q \<noteq> (P \<and>* sep_true) \<and> (\<forall>h. P h \<longrightarrow> Q h))"
by (fastforce intro!: ext sep_substate_disj_add dest!: sep_conjD intuitionisticD)
lemma weakest_intuitionistic:
"\<not> (\<exists>Q. (\<forall>h. ((sep_true \<longrightarrow>* P) h \<longrightarrow> Q h)) \<and> intuitionistic Q \<and>
Q \<noteq> (sep_true \<longrightarrow>* P) \<and> (\<forall>h. Q h \<longrightarrow> P h))"
apply (clarsimp)
apply (rule ext)
apply (rule iffI)
apply (rule sep_implI)
apply (drule_tac h="x" and h'="x + h'" in intuitionisticD)
apply (clarsimp simp: sep_add_ac sep_substate_disj_add)+
done
lemma intuitionistic_sep_conj_sep_true_P:
"\<lbrakk> (P \<and>* sep_true) s; intuitionistic P \<rbrakk> \<Longrightarrow> P s"
by (force dest: intuitionisticD elim: sep_conjE sep_substate_disj_add)
lemma intuitionistic_sep_conj_sep_true_simp:
"intuitionistic P \<Longrightarrow> (P \<and>* sep_true) = P"
by (fast intro!: sep_conj_sep_true
elim: intuitionistic_sep_conj_sep_true_P)
lemma intuitionistic_sep_impl_sep_true_P:
"\<lbrakk> P h; intuitionistic P \<rbrakk> \<Longrightarrow> (sep_true \<longrightarrow>* P) h"
by (force intro!: sep_implI dest: intuitionisticD
intro: sep_substate_disj_add)
lemma intuitionistic_sep_impl_sep_true_simp:
"intuitionistic P \<Longrightarrow> (sep_true \<longrightarrow>* P) = P"
by (fast elim: sep_impl_sep_true_P intuitionistic_sep_impl_sep_true_P)
subsection \<open>Strictly exact assertions\<close>
definition strictly_exact :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
"strictly_exact P \<equiv> \<forall>h h'. P h \<and> P h' \<longrightarrow> h = h'"
lemma strictly_exactD:
"\<lbrakk> strictly_exact P; P h; P h' \<rbrakk> \<Longrightarrow> h = h'"
by (unfold strictly_exact_def, fast)
lemma strictly_exactI:
"(\<And>h h'. \<lbrakk> P h; P h' \<rbrakk> \<Longrightarrow> h = h') \<Longrightarrow> strictly_exact P"
by (unfold strictly_exact_def, fast)
lemma strictly_exact_sep_conj:
"\<lbrakk> strictly_exact P; strictly_exact Q \<rbrakk> \<Longrightarrow> strictly_exact (P \<and>* Q)"
apply (rule strictly_exactI)
apply (erule sep_conjE)+
apply (drule_tac h="x" and h'="xa" in strictly_exactD, assumption+)
apply (drule_tac h="y" and h'="ya" in strictly_exactD, assumption+)
apply clarsimp
done
lemma strictly_exact_conj_impl:
"\<lbrakk> (Q \<and>* sep_true) h; P h; strictly_exact Q \<rbrakk> \<Longrightarrow> (Q \<and>* (Q \<longrightarrow>* P)) h"
by (force intro: sep_conjI sep_implI dest: strictly_exactD elim!: sep_conjE
simp: sep_add_commute sep_add_assoc)
end
section \<open>Separation Algebra with Stronger, but More Intuitive Disjunction Axiom\<close>
class stronger_sep_algebra = pre_sep_algebra +
assumes sep_add_disj_eq [simp]: "y ## z \<Longrightarrow> x ## y + z = (x ## y \<and> x ## z)"
begin
lemma sep_disj_add_eq [simp]: "x ## y \<Longrightarrow> x + y ## z = (x ## z \<and> y ## z)"
by (metis sep_add_disj_eq sep_disj_commute)
subclass sep_algebra by standard auto
end
interpretation sep: ab_semigroup_mult "(**)"
by unfold_locales (simp add: sep_conj_ac)+
interpretation sep: comm_monoid "(**)" \<box>
by unfold_locales simp
interpretation sep: comm_monoid_mult "(**)" \<box>
by unfold_locales simp
section \<open>Folding separating conjunction over lists and sets of predicates\<close>
definition
sep_list_conj :: "('a::sep_algebra \<Rightarrow> bool) list \<Rightarrow> ('a \<Rightarrow> bool)" where
"sep_list_conj Ps \<equiv> foldl ((**)) \<box> Ps"
abbreviation
sep_map_list_conj :: "('b \<Rightarrow> 'a::sep_algebra \<Rightarrow> bool) \<Rightarrow> 'b list \<Rightarrow> ('a \<Rightarrow> bool)"
where
"sep_map_list_conj g S \<equiv> sep_list_conj (map g S)"
abbreviation
sep_map_set_conj :: "('b \<Rightarrow> 'a::sep_algebra \<Rightarrow> bool) \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> bool)"
where
"sep_map_set_conj g S \<equiv> sep.prod g S"
definition
sep_set_conj :: "('a::sep_algebra \<Rightarrow> bool) set \<Rightarrow> ('a \<Rightarrow> bool)" where
"sep_set_conj S \<equiv> sep.prod id S"
(* Notation. *)
consts
sep_conj_lifted :: "'b \<Rightarrow> ('a::sep_algebra \<Rightarrow> bool)" ("\<And>* _" [60] 90)
notation (latex output) sep_conj_lifted ("\<And>\<^sup>* _" [60] 90)
notation (latex output) sep_map_list_conj ("\<And>\<^sup>* _" [60] 90)
adhoc_overloading sep_conj_lifted sep_list_conj
adhoc_overloading sep_conj_lifted sep_set_conj
(* FIXME. Add notation for sep_map_list_conj, and consider unifying with sep_map_set_conj. *)
text\<open>Now: lots of fancy syntax. First, @{term "sep_map_set_conj (%x. g) A"} is written @{text"\<And>+x\<in>A. g"}.\<close>
(* Clagged from Big_Operators. *)
syntax
"_sep_map_set_conj" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3SETSEPCONJ _:_. _)" [0, 51, 10] 10)
syntax (xsymbols)
"_sep_map_set_conj" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\<And>*_\<in>_. _)" [0, 51, 10] 10)
syntax (HTML output)
"_sep_map_set_conj" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\<And>*_\<in>_. _)" [0, 51, 10] 10)
syntax (latex output)
"_sep_map_set_conj" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\<And>\<^sup>*(00\<^bsub>_\<in>_\<^esub>) _)" [0, 51, 10] 10)
translations \<comment> \<open>Beware of argument permutation!\<close>
"SETSEPCONJ x:A. g" == "CONST sep_map_set_conj (%x. g) A"
"\<And>* x\<in>A. g" == "CONST sep_map_set_conj (%x. g) A"
text\<open>Instead of @{term"\<And>*x\<in>{x. P}. g"} we introduce the shorter @{text"\<And>+x|P. g"}.\<close>
syntax
"_qsep_map_set_conj" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SETSEPCONJ _ |/ _./ _)" [0,0,10] 10)
syntax (xsymbols)
"_qsep_map_set_conj" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<And>*_ | (_)./ _)" [0,0,10] 10)
syntax (HTML output)
"_qsep_map_set_conj" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<And>*_ | (_)./ _)" [0,0,10] 10)
syntax (latex output)
"_qsep_map_set_conj" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<And>\<^sup>*(00\<^bsub>_ | (_)\<^esub>) /_)" [0,0,10] 10)
translations
"SETSEPCONJ x|P. g" => "CONST sep_map_set_conj (%x. g) {x. P}"
"\<And>*x|P. g" => "CONST sep_map_set_conj (%x. g) {x. P}"
print_translation \<open>
let
fun setsepconj_tr' [Abs (x, Tx, t), Const (@{const_syntax Collect}, _) $ Abs (y, Ty, P)] =
if x <> y then raise Match
else
let
val x' = Syntax_Trans.mark_bound_body (x, Tx);
val t' = subst_bound (x', t);
val P' = subst_bound (x', P);
in
Syntax.const @{syntax_const "_qsep_map_set_conj"} $ Syntax_Trans.mark_bound_abs (x, Tx) $ P' $ t'
end
| setsepconj_tr' _ = raise Match;
in [(@{const_syntax sep_map_set_conj}, K setsepconj_tr')] end
\<close>
interpretation sep: folding "(\<and>*)" \<box>
by unfold_locales (simp add: comp_def sep_conj_ac)
lemma "\<And>* [\<box>,P] = P"
by (simp add: sep_list_conj_def)
lemma "\<And>* {\<box>} = \<box>"
by (simp add: sep_set_conj_def)
lemma "\<And>* {P,\<box>} = P"
by (cases "P = \<box>", auto simp: sep_set_conj_def)
lemma "(\<And>* x\<in>{0,1::nat}. if x=0 then \<box> else P) = P"
by auto
lemma map_sep_list_conj_cong:
"(\<And>x. x \<in> set xs \<Longrightarrow> f x = g x) \<Longrightarrow> \<And>* map f xs = \<And>* map g xs"
by (metis map_cong)
lemma sep_list_conj_Nil [simp]: "\<And>* [] = \<box>"
by (simp add: sep_list_conj_def)
(* apparently these two are rarely used and had to be removed from List.thy *)
lemma (in semigroup) foldl_assoc:
"foldl f (f x y) zs = f x (foldl f y zs)"
by (induct zs arbitrary: y) (simp_all add:assoc)
lemma (in monoid) foldl_absorb1:
"f x (foldl f z zs) = foldl f x zs"
by (induct zs) (simp_all add:foldl_assoc)
context comm_monoid
begin
lemma foldl_map_filter:
"f (foldl f z (map P (filter t xs))) (foldl f z (map P (filter (not t) xs))) = foldl f z (map P xs)"
proof (induct xs)
case Nil thus ?case by clarsimp
next
case (Cons x xs)
hence IH:
"foldl f z (map P xs) = f (foldl f z (map P (filter t xs))) (foldl f z (map P [x\<leftarrow>xs . \<not> t x]))"
by (simp only: eq_commute)
have foldl_Cons':
"\<And>x xs. foldl f z (x # xs) = f x (foldl f z xs)"
by (simp, subst foldl_absorb1[symmetric], rule refl)
{ assume "t x"
hence ?case by (auto simp del: foldl_Cons simp add: foldl_Cons' IH ac_simps)
} moreover {
assume "\<not> t x"
hence ?case by (auto simp del: foldl_Cons simp add: foldl_Cons' IH ac_simps)
}
ultimately show ?case by blast
qed
lemma foldl_map_add:
"foldl f z (map (\<lambda>x. f (P x) (Q x)) xs) = f (foldl f z (map P xs)) (foldl f z (map Q xs))"
apply (induct xs)
apply clarsimp
apply simp
by (metis (full_types) commute foldl_absorb1 foldl_assoc)
lemma foldl_map_remove1:
"x \<in> set xs \<Longrightarrow> foldl f z (map P xs) = f (P x) (foldl f z (map P (remove1 x xs)))"
apply (induction xs, simp)
apply clarsimp
by (metis foldl_absorb1 left_commute)
end
lemma sep_list_conj_Cons [simp]: "\<And>* (x#xs) = (x ** \<And>* xs)"
by (simp add: sep_list_conj_def sep.foldl_absorb1)
lemma sep_list_conj_append [simp]: "\<And>* (xs @ ys) = (\<And>* xs ** \<And>* ys)"
by (simp add: sep_list_conj_def sep.foldl_absorb1)
lemma sep_list_conj_map_append:
"\<And>* map f (xs @ ys) = (\<And>* map f xs \<and>* \<And>* map f ys)"
by (metis map_append sep_list_conj_append)
lemma sep_list_con_map_filter:
"(\<And>* map P (filter t xs) \<and>* \<And>* map P (filter (not t) xs))
= \<And>* map P xs"
apply (simp add: sep_list_conj_def)
apply (rule sep.foldl_map_filter)
done
lemma union_filter:
"({x \<in> xs. P x} \<union> {x \<in> xs. \<not> P x}) = xs"
by fast
lemma sep_map_set_conj_restrict:
"finite xs \<Longrightarrow>
sep_map_set_conj P xs =
(sep_map_set_conj P {x \<in> xs. t x} \<and>*
sep_map_set_conj P {x \<in> xs. \<not> t x})"
by (subst sep.prod.union_disjoint [symmetric], (fastforce simp: union_filter)+)
lemma sep_list_conj_map_add:
"\<And>* map (\<lambda>x. f x \<and>* g x) xs = (\<And>* map f xs \<and>* \<And>* map g xs)"
apply (simp add: sep_list_conj_def)
apply (rule sep.foldl_map_add)
done
lemma filter_empty:
"x \<notin> set xs \<Longrightarrow> filter ((=) x) xs = []"
by (induct xs, clarsimp+)
lemma filter_singleton:
"\<lbrakk>x \<in> set xs; distinct xs\<rbrakk> \<Longrightarrow> [x'\<leftarrow>xs . x = x'] = [x]"
by (induct xs, auto simp: filter_empty)
lemma remove1_filter:
"distinct xs \<Longrightarrow> remove1 x xs = filter (\<lambda>y. x \<noteq> y) xs"
apply (induct xs)
apply simp
apply clarsimp
apply (rule sym, rule filter_True)
apply clarsimp
done
lemma sep_list_conj_map_remove1:
"x \<in> set xs \<Longrightarrow> \<And>* map P xs = (P x \<and>* \<And>* map P (remove1 x xs))"
apply (simp add: sep_list_conj_def)
apply (erule sep.foldl_map_remove1)
done
lemma sep_map_take_Suc:
"i < length xs \<Longrightarrow>
\<And>* map P (take (Suc i) xs) = (\<And>* map P (take i xs) \<and>* P (xs ! i))"
by (subst take_Suc_conv_app_nth, simp+)
lemma sep_conj_map_split:
"(\<And>* map f xs \<and>* f a \<and>* \<And>* map f ys)
= (\<And>* map f (xs @ a # ys))"
by (metis list.map(2) map_append sep_list_conj_Cons sep_list_conj_append)
section "Separation predicates on sets"
lemma sep_map_set_conj_cong:
"\<lbrakk>P = Q; xs = ys\<rbrakk> \<Longrightarrow> sep_map_set_conj P xs = sep_map_set_conj Q ys"
by simp
lemma sep_set_conj_empty [simp]:
"sep_set_conj {} = \<box>"
by (simp add: sep_set_conj_def)
(* FIXME: We should be able to pull this from the "comm_monoid_big"
* or "comm_monoid_add" locales, but I can't work out how... *)
lemma sep_map_set_conj_reindex_cong:
"\<lbrakk>inj_on f A; B = f ` A; \<And>a. a \<in> A \<Longrightarrow> g a = h (f a)\<rbrakk>
\<Longrightarrow> sep_map_set_conj h B = sep_map_set_conj g A"
by (simp add: sep.prod.reindex)
lemma sep_list_conj_sep_map_set_conj:
"distinct xs
\<Longrightarrow> \<And>* (map P xs) = (\<And>* x \<in> set xs. P x)"
by (induct xs, simp_all)
lemma sep_list_conj_sep_set_conj:
"\<lbrakk>distinct xs; inj_on P (set xs)\<rbrakk>
\<Longrightarrow> \<And>* (map P xs) = \<And>* (P ` set xs)"
apply (subst sep_list_conj_sep_map_set_conj, assumption)
apply (clarsimp simp: sep_set_conj_def sep.prod.reindex)
done
lemma sep_map_set_conj_sep_list_conj:
"finite A \<Longrightarrow>
\<exists>xs. set xs = A \<and> distinct xs \<and> sep_map_set_conj P A = \<And>* map P xs"
apply (frule finite_distinct_list)
apply (erule exE)
apply (rule_tac x=xs in exI)
apply clarsimp
apply (erule sep_list_conj_sep_map_set_conj [symmetric])
done
lemma sep_list_conj_eq:
"\<lbrakk>distinct xs; distinct ys; set xs = set ys\<rbrakk> \<Longrightarrow>
\<And>* (map P xs) = \<And>* (map P ys)"
apply (drule sep_list_conj_sep_map_set_conj [where P=P])
apply (drule sep_list_conj_sep_map_set_conj [where P=P])
apply simp
done
lemma sep_list_conj_impl:
"\<lbrakk> list_all2 (\<lambda>x y. \<forall>s. x s \<longrightarrow> y s) xs ys; (\<And>* xs) s \<rbrakk> \<Longrightarrow> (\<And>* ys) s"
apply (induct arbitrary: s rule: list_all2_induct)
apply simp
apply simp
apply (erule sep_conj_impl, simp_all)
done
lemma sep_list_conj_exists:
"(\<exists>x. (\<And>* map (\<lambda>y s. P x y s) ys) s) \<Longrightarrow> ((\<And>* map (\<lambda>y s. \<exists>x. P x y s) ys) s)"
apply clarsimp
apply (erule sep_list_conj_impl[rotated])
apply (rule list_all2I, simp_all)
by (fastforce simp: in_set_zip)
lemma sep_list_conj_map_impl:
"\<lbrakk>\<And>s x. \<lbrakk>x \<in> set xs; P x s\<rbrakk> \<Longrightarrow> Q x s; (\<And>* map P xs) s\<rbrakk>
\<Longrightarrow> (\<And>* map Q xs) s"
apply (erule sep_list_conj_impl[rotated])
apply (rule list_all2I, simp_all)
by (fastforce simp: in_set_zip)
lemma sep_map_set_conj_impl:
"\<lbrakk>sep_map_set_conj P A s; \<And>s x. \<lbrakk>x \<in> A; P x s\<rbrakk> \<Longrightarrow> Q x s; finite A\<rbrakk>
\<Longrightarrow> sep_map_set_conj Q A s"
apply (frule sep_map_set_conj_sep_list_conj [where P=P])
apply (drule sep_map_set_conj_sep_list_conj [where P=Q])
by (metis sep_list_conj_map_impl sep_list_conj_sep_map_set_conj)
lemma set_sub_sub:
"\<lbrakk>zs \<subseteq> ys\<rbrakk> \<Longrightarrow> (xs - zs) - (ys - zs) = (xs - ys)"
by blast
lemma sep_map_set_conj_sub_sub_disjoint:
"\<lbrakk>finite xs; zs \<subseteq> ys; ys \<subseteq> xs\<rbrakk>
\<Longrightarrow> sep_map_set_conj P (xs - zs) = (sep_map_set_conj P (xs - ys) \<and>* sep_map_set_conj P (ys - zs))"
apply (cut_tac sep.prod.subset_diff [where A="xs-zs" and B="ys-zs" and g=P])
apply (subst (asm) set_sub_sub, fast+)
done
lemma foldl_use_filter_map:
"foldl (\<and>*) Q (map (\<lambda>x. if T x then P x else \<box>) xs) =
foldl (\<and>*) Q (map P (filter T xs))"
by (induct xs arbitrary: Q, simp_all)
lemma sep_list_conj_filter_map:
"\<And>* (map (\<lambda>x. if T x then P x else \<box>) xs) =
\<And>* (map P (filter T xs))"
by (clarsimp simp: sep_list_conj_def foldl_use_filter_map)
lemma sep_map_set_conj_restrict_predicate:
"finite A \<Longrightarrow> (\<And>* x\<in>A. if T x then P x else \<box>) = (\<And>* x\<in>(Set.filter T A). P x)"
by (simp add: Set.filter_def sep.prod.inter_filter)