-
Notifications
You must be signed in to change notification settings - Fork 4
/
main_completion.py
106 lines (91 loc) · 3.54 KB
/
main_completion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import argparse
import traceback
import logging
import yaml
import sys
import os
import torch
from utils import utils_logger
import numpy as np
import os
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
from runners.diffusion import Diffusion
torch.set_printoptions(sci_mode=False)
torch.cuda.set_device(0)
def parse_args_and_config():
parser = argparse.ArgumentParser(description=globals()["__doc__"])
parser.add_argument(
"--config", type=str, default='msi_completion.yml', help="Path to the config file"
)
parser.add_argument("--seed", type=int, default=1234, help="Random seed")
parser.add_argument(
"--exp", type=str, default="exp", help="Path for saving running related data."
)
parser.add_argument(
"--timesteps", type=int, default=3000, help="number of steps involved"
)
parser.add_argument(
"--start_point", type=float, default=1500
)
parser.add_argument(
"--deg", type=str, default='completion30', help="Degradation"
)
parser.add_argument(
"--sigma_0", type=float, default=0.1, help="Sigma_0"
)
parser.add_argument(
"--eta", type=float, default=0.95, help="Eta"
)
parser.add_argument(
"--etaB", type=float, default=1, help="Eta_b (before)"
)
parser.add_argument(
'--beta', type=float, default=0)
parser.add_argument(
'--rank', type=int, default=10)
args = parser.parse_args()
# parse config file
with open(os.path.join("configs", args.config), "r") as f:
config = yaml.safe_load(f)
new_config = dict2namespace(config)
if new_config.model.iter_number is not list:
new_config.model.iter_number = [new_config.model.iter_number] * args.timesteps
# add device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
logging.info("Using device: {}".format(device))
new_config.device = device
# set random seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.benchmark = True
return args, new_config
def dict2namespace(config):
namespace = argparse.Namespace()
for key, value in config.items():
if isinstance(value, dict):
new_value = dict2namespace(value)
else:
new_value = value
setattr(namespace, key, new_value)
return namespace
def main():
args, config = parse_args_and_config()
args.logger_name = '{}_{}_sigma{}_rank_{}_eta_{}_beta_{}-{}-{}_iteration_{}-{}_{}-{}_beta_{}_lr_{}'.format(args.deg, config.data.filename.split('.')[0], args.sigma_0, args.rank, args.eta, config.diffusion.beta_start, config.diffusion.beta_end, config.diffusion.beta_schedule, args.start_point, args.timesteps, config.model.iter_number[0], config.model.iter_number[-1], args.beta, config.model.lr)
args.image_folder = os.path.join('./results', args.logger_name)
if not os.path.exists(args.image_folder):
os.makedirs(args.image_folder)
utils_logger.logger_info(args.logger_name, os.path.join(args.image_folder, args.logger_name+'.log'))
logger = logging.getLogger(args.logger_name)
logger.info(f'Writing to {args.image_folder}')
logger.info("Writing log file to {}".format(args.logger_name))
try:
runner = Diffusion(args, config)
runner.sample(logger, config, args.image_folder)
except Exception:
logging.error(traceback.format_exc())
return 0
if __name__ == "__main__":
sys.exit(main())