-
Notifications
You must be signed in to change notification settings - Fork 150
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
tensor size mismatch error #93
Comments
I have found the solution Most likely you have the same issue as mine. In I have solved the problem by converting mask to grayscale so that mask shape is just [H, W]:
|
Thank you @Ruhrozz .I tried the above solution suggested by you. It has solved the tensor error but I'm facing issue for the lable image shape. Was this type of error faced by you?? Your help will be appreciated. I have pasted the error below: Traceback (most recent call last): |
I am trying to train STEGO on a custom dataset but during the training process if I provide labels for the corresponding images I get the following error:
Traceback (most recent call last):
File "train_segmentation.py", line 598, in my_app
trainer.fit(model, train_loader, val_loader)
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 741, in fit
self._fit_impl, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 685, in _call_and_handle_interrupt
return trainer_fn(*args, **kwargs)
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 777, in _fit_impl
self._run(model, ckpt_path=ckpt_path)
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1199, in _run
self._dispatch()
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1279, in _dispatch
self.training_type_plugin.start_training(self)
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py", line 202, in start_training
self._results = trainer.run_stage()
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1289, in run_stage
return self._run_train()
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1311, in _run_train
self._run_sanity_check(self.lightning_module)
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1375, in _run_sanity_check
self._evaluation_loop.run()
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/loops/base.py", line 145, in run
self.advance(*args, **kwargs)
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/loops/dataloader/evaluation_loop.py", line 110, in advance
dl_outputs = self.epoch_loop.run(dataloader, dataloader_idx, dl_max_batches, self.num_dataloaders)
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/loops/base.py", line 145, in run
self.advance(*args, **kwargs)
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 122, in advance
output = self._evaluation_step(batch, batch_idx, dataloader_idx)
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 217, in _evaluation_step
output = self.trainer.accelerator.validation_step(step_kwargs)
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/accelerators/accelerator.py", line 239, in validation_step
return self.training_type_plugin.validation_step(*step_kwargs.values())
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py", line 219, in validation_step
return self.model.validation_step(*args, **kwargs)
File "train_segmentation.py", line 354, in validation_step
self.linear_metrics.update(linear_preds, label)
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/torchmetrics/metric.py", line 405, in wrapped_func
raise err
File "/media/2d46715b-293d-4478-acd4-5f000d443896/anaconda3/envs/stegostudies/lib/python3.7/site-packages/torchmetrics/metric.py", line 395, in wrapped_func
update(*args, **kwargs)
File "/media/2d46715b-293d-4478-acd4-5f000d443896/stego-studies/src/utils.py", line 240, in update
mask = (actual >= 0) & (actual < self.n_classes) & (preds >= 0) & (preds < self.n_classes)
RuntimeError: The size of tensor a (3276800) must match the size of tensor b (10240) at non-singleton dimension 0
Please help me with the following. Thank you
The text was updated successfully, but these errors were encountered: