forked from lacker/ikalman
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kalman_test.c
44 lines (35 loc) · 1.28 KB
/
kalman_test.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <stdio.h>
#include "kalman.h"
/* Test the example of a train moving along a 1-d track */
void test_train() {
KalmanFilter f = alloc_filter(2, 1);
/* The train state is a 2d vector containing position and velocity.
Velocity is measured in position units per timestep units. */
set_matrix(f.state_transition,
1.0, 1.0,
0.0, 1.0);
/* We only observe position */
set_matrix(f.observation_model, 1.0, 0.0);
/* The covariance matrices are blind guesses */
set_identity_matrix(f.process_noise_covariance);
set_identity_matrix(f.observation_noise_covariance);
/* Our knowledge of the start position is incorrect and unconfident */
double deviation = 1000.0;
set_matrix(f.state_estimate, 10 * deviation);
set_identity_matrix(f.estimate_covariance);
scale_matrix(f.estimate_covariance, deviation * deviation);
/* Test with time steps of the position gradually increasing */
for (int i = 0; i < 10; ++i) {
set_matrix(f.observation, (double) i);
update(f);
}
/* Our prediction should be close to (10, 1) */
printf("estimated position: %f\n", f.state_estimate.data[0][0]);
printf("estimated velocity: %f\n", f.state_estimate.data[1][0]);
free_filter(f);
}
int main(int argc, char *argv[]) {
test_train();
printf("OK\n");
return 0;
}