From eda19884250b7a33f1b4966b228fb87ddffbe61e Mon Sep 17 00:00:00 2001 From: Manny Gimond Date: Tue, 20 Feb 2024 09:41:39 -0500 Subject: [PATCH] made a few dplyr chapter edits --- docs/dplyr.html | 208 ++++++++--------- docs/ggplot2.html | 18 +- docs/joins.html | 6 +- docs/lattice_plot.html | 6 +- docs/letter_values.html | 6 +- docs/re_express.html | 2 +- docs/read_write_files.html | 14 +- docs/rf.html | 2 +- docs/search.json | 6 +- docs/strings.html | 6 +- docs/subset_base.html | 12 +- docs/theoretical_qq.html | 2 +- docs/tidyr.html | 8 +- docs/univariate_plots.html | 16 +- dplyr.qmd | 69 +++--- ...k-1_e3ba058d8070d51d61096aadebc5455c.RData | Bin 161 -> 0 bytes ...unk-1_e3ba058d8070d51d61096aadebc5455c.rdb | Bin 1370 -> 0 bytes ...unk-1_e3ba058d8070d51d61096aadebc5455c.rdx | Bin 158 -> 0 bytes ...-29_0f202011f488ca11f660ae78566050e9.RData | Bin 299 -> 0 bytes ...-29_91b267ecfb4302c8f57e3ca23fefdf2e.RData | Bin 0 -> 299 bytes ...k-29_91b267ecfb4302c8f57e3ca23fefdf2e.rdb} | Bin ...k-29_91b267ecfb4302c8f57e3ca23fefdf2e.rdx} | Bin ...k-2_cd865d8d1ac8a3f1ea6152390c61ddc5.RData | Bin 843 -> 845 bytes ...unk-2_cd865d8d1ac8a3f1ea6152390c61ddc5.rdb | Bin 318 -> 320 bytes ...unk-2_cd865d8d1ac8a3f1ea6152390c61ddc5.rdx | Bin 201 -> 201 bytes ...-30_6ab83f1178b9567a59708d7591c62fc7.RData | Bin 264 -> 0 bytes ...-30_88fce4081d0023fd191b22812da98908.RData | Bin 0 -> 267 bytes ...k-30_88fce4081d0023fd191b22812da98908.rdb} | 0 ...k-30_88fce4081d0023fd191b22812da98908.rdx} | Bin ...-32_542c991653d2ab5f557711a5155af152.RData | Bin 270 -> 0 bytes ...-32_75d7cd0c71e983d298e7e15a5651b06d.RData | Bin 0 -> 266 bytes ...k-32_75d7cd0c71e983d298e7e15a5651b06d.rdb} | 0 ...k-32_75d7cd0c71e983d298e7e15a5651b06d.rdx} | Bin ...-33_18fd5f391499178d28d1c77cf1f909f0.RData | Bin 0 -> 288 bytes ...k-33_18fd5f391499178d28d1c77cf1f909f0.rdb} | Bin ...k-33_18fd5f391499178d28d1c77cf1f909f0.rdx} | Bin ...-33_797e052f1d95d03d9a77fbeeeb55f944.RData | Bin 255 -> 0 bytes ...nk-33_797e052f1d95d03d9a77fbeeeb55f944.rdb | Bin 113 -> 0 bytes ...nk-33_797e052f1d95d03d9a77fbeeeb55f944.rdx | Bin 141 -> 0 bytes ...-34_c2d0667f5ab3b61b13791fc7e8308400.RData | Bin 0 -> 281 bytes ...k-34_c2d0667f5ab3b61b13791fc7e8308400.rdb} | 0 ...k-34_c2d0667f5ab3b61b13791fc7e8308400.rdx} | Bin ...-34_fa52c92e47b0b39d13644cdae65b4cf4.RData | Bin 242 -> 0 bytes ...-35_8f84bd215e652fa25e72ceb025034415.RData | Bin 256 -> 0 bytes ...-35_bf98f13826aa0f4320e322e3d85f05f4.RData | Bin 0 -> 209 bytes ...k-35_bf98f13826aa0f4320e322e3d85f05f4.rdb} | Bin ...k-35_bf98f13826aa0f4320e322e3d85f05f4.rdx} | Bin ...-36_104258c1a17d4c84f440af570c45db9d.RData | Bin 289 -> 0 bytes ...-36_4e4430a719e5be5bbf712d9f669d0bfb.RData | Bin 0 -> 291 bytes ...k-36_4e4430a719e5be5bbf712d9f669d0bfb.rdb} | 0 ...k-36_4e4430a719e5be5bbf712d9f669d0bfb.rdx} | Bin ...-37_3aeb8a2149a450beeeacf2a941532d4b.RData | Bin 280 -> 0 bytes ...-37_655a4ddd3d0cc846225b52070f0d0d59.RData | Bin 0 -> 312 bytes ...k-37_655a4ddd3d0cc846225b52070f0d0d59.rdb} | 0 ...k-37_655a4ddd3d0cc846225b52070f0d0d59.rdx} | Bin ...-38_03c292ecfd557b498e6a1fa72980c48c.RData | Bin 209 -> 0 bytes ...-38_9d6c65603d6280fcee7310e3a57a3e2b.RData | Bin 0 -> 536 bytes ...k-38_9d6c65603d6280fcee7310e3a57a3e2b.rdb} | Bin ...k-38_9d6c65603d6280fcee7310e3a57a3e2b.rdx} | Bin ...-39_231631f9e42d0389f6ee62b2e3c7b3c6.RData | Bin 290 -> 0 bytes ...-39_413916200d38f207d13cdeadb1fd8d5c.RData | Bin 0 -> 254 bytes ...k-39_413916200d38f207d13cdeadb1fd8d5c.rdb} | Bin ...k-39_413916200d38f207d13cdeadb1fd8d5c.rdx} | Bin ...-40_4622a437ccb16e69a968089c5b9b434c.RData | Bin 312 -> 0 bytes ...-40_dc836df1ca7c88ec29f2075dc1e8e9d9.RData | Bin 0 -> 257 bytes ...k-40_dc836df1ca7c88ec29f2075dc1e8e9d9.rdb} | Bin ...k-40_dc836df1ca7c88ec29f2075dc1e8e9d9.rdx} | Bin ...-41_1fe48bea4b2203163cc5754f7c8dd3c4.RData | Bin 0 -> 295 bytes ...nk-41_1fe48bea4b2203163cc5754f7c8dd3c4.rdb | Bin 0 -> 119 bytes ...nk-41_1fe48bea4b2203163cc5754f7c8dd3c4.rdx | Bin 0 -> 141 bytes ...-41_6e4c3ee0b265a5108b80b977ed8b6ffd.RData | Bin 537 -> 0 bytes ...-42_6a414460c5987192871617ff047e29bd.RData | Bin 0 -> 282 bytes ...nk-42_6a414460c5987192871617ff047e29bd.rdb | Bin 0 -> 89 bytes ...nk-42_6a414460c5987192871617ff047e29bd.rdx | Bin 0 -> 141 bytes ...-42_7261d725df4c17cb509f77a364f3aaf5.RData | Bin 254 -> 0 bytes ...-43_66984b16591f46b405e9424816614f55.RData | Bin 259 -> 0 bytes ...-43_e2e72107e42c3009109e09c33c29cd9b.RData | Bin 0 -> 237 bytes ...k-43_e2e72107e42c3009109e09c33c29cd9b.rdb} | Bin ...k-43_e2e72107e42c3009109e09c33c29cd9b.rdx} | Bin ...-44_8a78a6457fd0c64010d0dee308d28e49.RData | Bin 277 -> 0 bytes ...nk-44_8a78a6457fd0c64010d0dee308d28e49.rdb | Bin 58 -> 0 bytes ...nk-44_8a78a6457fd0c64010d0dee308d28e49.rdx | Bin 143 -> 0 bytes ...-44_f2796ae43cdcb603a836e3907d08d22a.RData | Bin 0 -> 300 bytes ...k-44_f2796ae43cdcb603a836e3907d08d22a.rdb} | 0 ...k-44_f2796ae43cdcb603a836e3907d08d22a.rdx} | Bin ...-45_85222b7196fcd91519de44d6aead42df.RData | Bin 238 -> 0 bytes ...-45_aba2095b8bbf3a5f5fb04fd4d70ea5de.RData | Bin 0 -> 337 bytes ...k-45_aba2095b8bbf3a5f5fb04fd4d70ea5de.rdb} | Bin ...k-45_aba2095b8bbf3a5f5fb04fd4d70ea5de.rdx} | Bin ...-46_38ae921b81ec14e10ba468a5f2394c20.RData | Bin 300 -> 0 bytes ...nk-46_38ae921b81ec14e10ba468a5f2394c20.rdb | 0 ...nk-46_38ae921b81ec14e10ba468a5f2394c20.rdx | Bin 125 -> 0 bytes ...-46_9297849a799bbf9f594b08d47d857bef.RData | Bin 0 -> 336 bytes ...k-46_9297849a799bbf9f594b08d47d857bef.rdb} | Bin ...k-46_9297849a799bbf9f594b08d47d857bef.rdx} | Bin ...-47_75551c4593e8eca9ef546d365ed6fee6.RData | Bin 0 -> 284 bytes ...k-47_75551c4593e8eca9ef546d365ed6fee6.rdb} | Bin ...k-47_75551c4593e8eca9ef546d365ed6fee6.rdx} | Bin ...-47_903914cfe19387a66b91afc035d4c5fe.RData | Bin 338 -> 0 bytes ...-48_928d1569b85ec61fb6859fdf39f77269.RData | Bin 336 -> 0 bytes ...-48_aee6e46984a1b347428576a3ca4bef76.RData | Bin 0 -> 279 bytes ...k-48_aee6e46984a1b347428576a3ca4bef76.rdb} | 0 ...k-48_aee6e46984a1b347428576a3ca4bef76.rdx} | Bin ...-49_c9fc63cbeb534e1f4921e18f8781c9df.RData | Bin 377 -> 0 bytes .../figure-html/unnamed-chunk-6-1.png | Bin 0 -> 21366 bytes .../figure-html/unnamed-chunk-13-1.png | Bin 0 -> 13456 bytes sl_plot.knit.md | 218 ------------------ sl_plot_files/execute-results/html.json | 18 -- .../figure-html/unnamed-chunk-16-1.png | Bin 0 -> 6301 bytes .../figure-html/unnamed-chunk-30-1.png | Bin 0 -> 3037 bytes .../figure-html/unnamed-chunk-31-1.png | Bin 0 -> 2824 bytes .../figure-html/unnamed-chunk-32-1.png | Bin 0 -> 2824 bytes .../figure-html/unnamed-chunk-39-1.png | Bin 0 -> 6181 bytes .../figure-html/unnamed-chunk-40-1.png | Bin 0 -> 25529 bytes .../figure-html/unnamed-chunk-41-1.png | Bin 0 -> 25529 bytes 115 files changed, 183 insertions(+), 434 deletions(-) delete mode 100644 dplyr_cache/html/unnamed-chunk-1_e3ba058d8070d51d61096aadebc5455c.RData delete mode 100644 dplyr_cache/html/unnamed-chunk-1_e3ba058d8070d51d61096aadebc5455c.rdb delete mode 100644 dplyr_cache/html/unnamed-chunk-1_e3ba058d8070d51d61096aadebc5455c.rdx delete mode 100644 dplyr_cache/html/unnamed-chunk-29_0f202011f488ca11f660ae78566050e9.RData create mode 100644 dplyr_cache/html/unnamed-chunk-29_91b267ecfb4302c8f57e3ca23fefdf2e.RData rename dplyr_cache/html/{unnamed-chunk-29_0f202011f488ca11f660ae78566050e9.rdb => unnamed-chunk-29_91b267ecfb4302c8f57e3ca23fefdf2e.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-29_0f202011f488ca11f660ae78566050e9.rdx => unnamed-chunk-29_91b267ecfb4302c8f57e3ca23fefdf2e.rdx} (100%) delete mode 100644 dplyr_cache/html/unnamed-chunk-30_6ab83f1178b9567a59708d7591c62fc7.RData create mode 100644 dplyr_cache/html/unnamed-chunk-30_88fce4081d0023fd191b22812da98908.RData rename dplyr_cache/html/{unnamed-chunk-30_6ab83f1178b9567a59708d7591c62fc7.rdb => unnamed-chunk-30_88fce4081d0023fd191b22812da98908.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-30_6ab83f1178b9567a59708d7591c62fc7.rdx => unnamed-chunk-30_88fce4081d0023fd191b22812da98908.rdx} (100%) delete mode 100644 dplyr_cache/html/unnamed-chunk-32_542c991653d2ab5f557711a5155af152.RData create mode 100644 dplyr_cache/html/unnamed-chunk-32_75d7cd0c71e983d298e7e15a5651b06d.RData rename dplyr_cache/html/{unnamed-chunk-32_542c991653d2ab5f557711a5155af152.rdb => unnamed-chunk-32_75d7cd0c71e983d298e7e15a5651b06d.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-32_542c991653d2ab5f557711a5155af152.rdx => unnamed-chunk-32_75d7cd0c71e983d298e7e15a5651b06d.rdx} (100%) create mode 100644 dplyr_cache/html/unnamed-chunk-33_18fd5f391499178d28d1c77cf1f909f0.RData rename dplyr_cache/html/{unnamed-chunk-36_104258c1a17d4c84f440af570c45db9d.rdb => unnamed-chunk-33_18fd5f391499178d28d1c77cf1f909f0.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-36_104258c1a17d4c84f440af570c45db9d.rdx => unnamed-chunk-33_18fd5f391499178d28d1c77cf1f909f0.rdx} (100%) delete mode 100644 dplyr_cache/html/unnamed-chunk-33_797e052f1d95d03d9a77fbeeeb55f944.RData delete mode 100644 dplyr_cache/html/unnamed-chunk-33_797e052f1d95d03d9a77fbeeeb55f944.rdb delete mode 100644 dplyr_cache/html/unnamed-chunk-33_797e052f1d95d03d9a77fbeeeb55f944.rdx create mode 100644 dplyr_cache/html/unnamed-chunk-34_c2d0667f5ab3b61b13791fc7e8308400.RData rename dplyr_cache/html/{unnamed-chunk-34_fa52c92e47b0b39d13644cdae65b4cf4.rdb => unnamed-chunk-34_c2d0667f5ab3b61b13791fc7e8308400.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-34_fa52c92e47b0b39d13644cdae65b4cf4.rdx => unnamed-chunk-34_c2d0667f5ab3b61b13791fc7e8308400.rdx} (100%) delete mode 100644 dplyr_cache/html/unnamed-chunk-34_fa52c92e47b0b39d13644cdae65b4cf4.RData delete mode 100644 dplyr_cache/html/unnamed-chunk-35_8f84bd215e652fa25e72ceb025034415.RData create mode 100644 dplyr_cache/html/unnamed-chunk-35_bf98f13826aa0f4320e322e3d85f05f4.RData rename dplyr_cache/html/{unnamed-chunk-38_03c292ecfd557b498e6a1fa72980c48c.rdb => unnamed-chunk-35_bf98f13826aa0f4320e322e3d85f05f4.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-38_03c292ecfd557b498e6a1fa72980c48c.rdx => unnamed-chunk-35_bf98f13826aa0f4320e322e3d85f05f4.rdx} (100%) delete mode 100644 dplyr_cache/html/unnamed-chunk-36_104258c1a17d4c84f440af570c45db9d.RData create mode 100644 dplyr_cache/html/unnamed-chunk-36_4e4430a719e5be5bbf712d9f669d0bfb.RData rename dplyr_cache/html/{unnamed-chunk-35_8f84bd215e652fa25e72ceb025034415.rdb => unnamed-chunk-36_4e4430a719e5be5bbf712d9f669d0bfb.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-35_8f84bd215e652fa25e72ceb025034415.rdx => unnamed-chunk-36_4e4430a719e5be5bbf712d9f669d0bfb.rdx} (100%) delete mode 100644 dplyr_cache/html/unnamed-chunk-37_3aeb8a2149a450beeeacf2a941532d4b.RData create mode 100644 dplyr_cache/html/unnamed-chunk-37_655a4ddd3d0cc846225b52070f0d0d59.RData rename dplyr_cache/html/{unnamed-chunk-37_3aeb8a2149a450beeeacf2a941532d4b.rdb => unnamed-chunk-37_655a4ddd3d0cc846225b52070f0d0d59.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-37_3aeb8a2149a450beeeacf2a941532d4b.rdx => unnamed-chunk-37_655a4ddd3d0cc846225b52070f0d0d59.rdx} (100%) delete mode 100644 dplyr_cache/html/unnamed-chunk-38_03c292ecfd557b498e6a1fa72980c48c.RData create mode 100644 dplyr_cache/html/unnamed-chunk-38_9d6c65603d6280fcee7310e3a57a3e2b.RData rename dplyr_cache/html/{unnamed-chunk-41_6e4c3ee0b265a5108b80b977ed8b6ffd.rdb => unnamed-chunk-38_9d6c65603d6280fcee7310e3a57a3e2b.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-41_6e4c3ee0b265a5108b80b977ed8b6ffd.rdx => unnamed-chunk-38_9d6c65603d6280fcee7310e3a57a3e2b.rdx} (100%) delete mode 100644 dplyr_cache/html/unnamed-chunk-39_231631f9e42d0389f6ee62b2e3c7b3c6.RData create mode 100644 dplyr_cache/html/unnamed-chunk-39_413916200d38f207d13cdeadb1fd8d5c.RData rename dplyr_cache/html/{unnamed-chunk-42_7261d725df4c17cb509f77a364f3aaf5.rdb => unnamed-chunk-39_413916200d38f207d13cdeadb1fd8d5c.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-42_7261d725df4c17cb509f77a364f3aaf5.rdx => unnamed-chunk-39_413916200d38f207d13cdeadb1fd8d5c.rdx} (100%) delete mode 100644 dplyr_cache/html/unnamed-chunk-40_4622a437ccb16e69a968089c5b9b434c.RData create mode 100644 dplyr_cache/html/unnamed-chunk-40_dc836df1ca7c88ec29f2075dc1e8e9d9.RData rename dplyr_cache/html/{unnamed-chunk-43_66984b16591f46b405e9424816614f55.rdb => unnamed-chunk-40_dc836df1ca7c88ec29f2075dc1e8e9d9.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-43_66984b16591f46b405e9424816614f55.rdx => unnamed-chunk-40_dc836df1ca7c88ec29f2075dc1e8e9d9.rdx} (100%) create mode 100644 dplyr_cache/html/unnamed-chunk-41_1fe48bea4b2203163cc5754f7c8dd3c4.RData create mode 100644 dplyr_cache/html/unnamed-chunk-41_1fe48bea4b2203163cc5754f7c8dd3c4.rdb create mode 100644 dplyr_cache/html/unnamed-chunk-41_1fe48bea4b2203163cc5754f7c8dd3c4.rdx delete mode 100644 dplyr_cache/html/unnamed-chunk-41_6e4c3ee0b265a5108b80b977ed8b6ffd.RData create mode 100644 dplyr_cache/html/unnamed-chunk-42_6a414460c5987192871617ff047e29bd.RData create mode 100644 dplyr_cache/html/unnamed-chunk-42_6a414460c5987192871617ff047e29bd.rdb create mode 100644 dplyr_cache/html/unnamed-chunk-42_6a414460c5987192871617ff047e29bd.rdx delete mode 100644 dplyr_cache/html/unnamed-chunk-42_7261d725df4c17cb509f77a364f3aaf5.RData delete mode 100644 dplyr_cache/html/unnamed-chunk-43_66984b16591f46b405e9424816614f55.RData create mode 100644 dplyr_cache/html/unnamed-chunk-43_e2e72107e42c3009109e09c33c29cd9b.RData rename dplyr_cache/html/{unnamed-chunk-45_85222b7196fcd91519de44d6aead42df.rdb => unnamed-chunk-43_e2e72107e42c3009109e09c33c29cd9b.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-45_85222b7196fcd91519de44d6aead42df.rdx => unnamed-chunk-43_e2e72107e42c3009109e09c33c29cd9b.rdx} (100%) delete mode 100644 dplyr_cache/html/unnamed-chunk-44_8a78a6457fd0c64010d0dee308d28e49.RData delete mode 100644 dplyr_cache/html/unnamed-chunk-44_8a78a6457fd0c64010d0dee308d28e49.rdb delete mode 100644 dplyr_cache/html/unnamed-chunk-44_8a78a6457fd0c64010d0dee308d28e49.rdx create mode 100644 dplyr_cache/html/unnamed-chunk-44_f2796ae43cdcb603a836e3907d08d22a.RData rename dplyr_cache/html/{unnamed-chunk-39_231631f9e42d0389f6ee62b2e3c7b3c6.rdb => unnamed-chunk-44_f2796ae43cdcb603a836e3907d08d22a.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-39_231631f9e42d0389f6ee62b2e3c7b3c6.rdx => unnamed-chunk-44_f2796ae43cdcb603a836e3907d08d22a.rdx} (100%) delete mode 100644 dplyr_cache/html/unnamed-chunk-45_85222b7196fcd91519de44d6aead42df.RData create mode 100644 dplyr_cache/html/unnamed-chunk-45_aba2095b8bbf3a5f5fb04fd4d70ea5de.RData rename dplyr_cache/html/{unnamed-chunk-47_903914cfe19387a66b91afc035d4c5fe.rdb => unnamed-chunk-45_aba2095b8bbf3a5f5fb04fd4d70ea5de.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-47_903914cfe19387a66b91afc035d4c5fe.rdx => unnamed-chunk-45_aba2095b8bbf3a5f5fb04fd4d70ea5de.rdx} (100%) delete mode 100644 dplyr_cache/html/unnamed-chunk-46_38ae921b81ec14e10ba468a5f2394c20.RData delete mode 100644 dplyr_cache/html/unnamed-chunk-46_38ae921b81ec14e10ba468a5f2394c20.rdb delete mode 100644 dplyr_cache/html/unnamed-chunk-46_38ae921b81ec14e10ba468a5f2394c20.rdx create mode 100644 dplyr_cache/html/unnamed-chunk-46_9297849a799bbf9f594b08d47d857bef.RData rename dplyr_cache/html/{unnamed-chunk-48_928d1569b85ec61fb6859fdf39f77269.rdb => unnamed-chunk-46_9297849a799bbf9f594b08d47d857bef.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-48_928d1569b85ec61fb6859fdf39f77269.rdx => unnamed-chunk-46_9297849a799bbf9f594b08d47d857bef.rdx} (100%) create mode 100644 dplyr_cache/html/unnamed-chunk-47_75551c4593e8eca9ef546d365ed6fee6.RData rename dplyr_cache/html/{unnamed-chunk-49_c9fc63cbeb534e1f4921e18f8781c9df.rdb => unnamed-chunk-47_75551c4593e8eca9ef546d365ed6fee6.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-49_c9fc63cbeb534e1f4921e18f8781c9df.rdx => unnamed-chunk-47_75551c4593e8eca9ef546d365ed6fee6.rdx} (100%) delete mode 100644 dplyr_cache/html/unnamed-chunk-47_903914cfe19387a66b91afc035d4c5fe.RData delete mode 100644 dplyr_cache/html/unnamed-chunk-48_928d1569b85ec61fb6859fdf39f77269.RData create mode 100644 dplyr_cache/html/unnamed-chunk-48_aee6e46984a1b347428576a3ca4bef76.RData rename dplyr_cache/html/{unnamed-chunk-40_4622a437ccb16e69a968089c5b9b434c.rdb => unnamed-chunk-48_aee6e46984a1b347428576a3ca4bef76.rdb} (100%) rename dplyr_cache/html/{unnamed-chunk-40_4622a437ccb16e69a968089c5b9b434c.rdx => unnamed-chunk-48_aee6e46984a1b347428576a3ca4bef76.rdx} (100%) delete mode 100644 dplyr_cache/html/unnamed-chunk-49_c9fc63cbeb534e1f4921e18f8781c9df.RData create mode 100644 letter_values_files/figure-html/unnamed-chunk-6-1.png create mode 100644 resistant_lines_files/figure-html/unnamed-chunk-13-1.png delete mode 100644 sl_plot.knit.md delete mode 100644 sl_plot_files/execute-results/html.json create mode 100644 univariate_plots_files/figure-html/unnamed-chunk-16-1.png create mode 100644 univariate_plots_files/figure-html/unnamed-chunk-30-1.png create mode 100644 univariate_plots_files/figure-html/unnamed-chunk-31-1.png create mode 100644 univariate_plots_files/figure-html/unnamed-chunk-32-1.png create mode 100644 univariate_plots_files/figure-html/unnamed-chunk-39-1.png create mode 100644 univariate_plots_files/figure-html/unnamed-chunk-40-1.png create mode 100644 univariate_plots_files/figure-html/unnamed-chunk-41-1.png diff --git a/docs/dplyr.html b/docs/dplyr.html index 60859d29..3dec0363 100644 --- a/docs/dplyr.html +++ b/docs/dplyr.html @@ -942,119 +942,97 @@

[1] "1" "2" "2" "apple" "1" -

The output is a character representation of the level number (recall that factors encode level values as numbers behind the scenes, i.e. apple =1, banana=2, etc…). Likewise, if you wish to replace an erroneous date with a missing value you will get:

-
+

The output is a character representation of the level number (recall that factors encode level values as numbers behind the scenes, i.e. apple =1, banana=2, etc…). Likewise, if you wish to replace an erroneous date you will get:

+
library(lubridate)
 y <- mdy("1/23/2016", "3/2/2016", "12/1/1901", "11/23/2016")
-ifelse( year(y) != 2016, NA, y)
+ifelse( y == mdy("12/1/1901"), mdy("12/1/2016"), y)
-
[1] 16823 16862    NA 17128
+
[1] 16823 16862 17136 17128

Here, ifelse converts the date object to its internal numeric representation as number of days since 1970.

9.3.2 dplyr’s if_else

-

ifelse does not preserve the attributes that might be present in a vector. In other words, it will strip away the vector’s class. If you want to ensure that the vector’s class is preserved, a safer alternative is to use dplyr’s if_else function.

+

ifelse does not preserve the attributes that might be present in a vector. In other words, it will strip away the vector’s class. A safer alternative is to use dplyr’s if_else function.

Reworking the above examples:

-
-
if_else( year(y) != 2016, NA, y)
+
+
if_else( y == mdy("12/1/1901"), mdy("12/1/2016"), y)
-
[1] "2016-01-23" "2016-03-02" NA           "2016-11-23"
+
[1] "2016-01-23" "2016-03-02" "2016-12-01" "2016-11-23"
+

The date class is preserved. Now let’s check the output of a factor.

if_else(x == "pear", "apple", x)
[1] "apple"  "banana" "banana" "apple"  "apple" 
-

Note that when working with factors, however, if_else will strip the factor class of an input factor. dplyr offers a recode function for this purpose however, this function is being superseded according to the documentation as of version 1.1.4. The workaround is to convert the if_else output to a factor.

-
-
as.factor(if_else(x == "pear", "apple", x))
+

Note that when working with factors, however, if_else will strip the factor class of an input factor. But, instead of returning the factor’s underlying integer values, it outputs the associated levels as a character data type.

+

The workaround is to convert the if_else output to a factor.

+
+
factor(if_else(x == "pear", "apple", x))
[1] apple  banana banana apple  apple 
 Levels: apple banana
-
-

9.3.2.1 Note on replacing NA factor levels

-

One operation you cannot perform with if_else is converting an NA level to another factor level. For example, let’s add an NA value to the x factor:

-
-
x[2] <- NA
-x
-
-
[1] apple  <NA>   banana pear   apple 
-Levels: apple banana pear
-
-
-

If we want to replace NA with banana the following will generate an unexpected output.

-
-
if_else( x == NA, "banana", x)
-
-
[1] NA NA NA NA NA
-
-
-

To evaluate if a value is NA, use the is.na() function as in:

-
-
if_else( is.na(x), "banana", x)
-
-
[1] "apple"  "banana" "banana" "pear"   "apple" 
-
-
-
+

If you need to explicitly define the levels, add the levels = c("pear",...).

+

NOTE: dplyr offers the recode function that preserves factors however, this function is being superseded according to the documentation as of version 1.1.4.

9.3.3 Changing values based on multiple conditions: case_when

-

ifelse and if_else work great when a single set of conditions is to be satisfied. But if multiple sets of conditions are to be tested, nested if/else statements become cumbersome and are prone to clerical error. The following code highlights an example of nested if/else statements.

-
-
unit <- c("F","F","C", "K")
-if_else( unit == "C", "Celsius", if_else(unit == "F", "Fahrenheit", "Kelvin"))
+

ifelse and if_else work great when a single set of conditions is to be satisfied. But, if multiple sets of conditions are to be evaluated, nested if/else statements become cumbersome and are prone to clerical error. The following code highlights an example of nested if/else statements.

+
+
unit <- c("F","F","C", "K")
+if_else( unit == "C", "Celsius", if_else(unit == "F", "Fahrenheit", "Kelvin"))
[1] "Fahrenheit" "Fahrenheit" "Celsius"    "Kelvin"    

A simpler solution is to use the case_when function.

-
-
case_when(unit == "C" ~ "Celsius",
-          unit == "F" ~ "Fahrenheit",
-          unit == "K" ~ "Kelvin")
+
+
case_when(unit == "C" ~ "Celsius",
+          unit == "F" ~ "Fahrenheit",
+          unit == "K" ~ "Kelvin")
[1] "Fahrenheit" "Fahrenheit" "Celsius"    "Kelvin"    

case_when can aso be used for more complex operations. For example, given two vectors, unit and temp, we would like to convert all temp values to Fahrenheit by applying a temperature conversion dependent on the unit value.

-
-
temp <- c(45.2, 56.3, 11.0, 285)
+
+
temp <- c(45.2, 56.3, 11.0, 285)
-
-
case_when(unit == "F" ~ temp,
-          unit == "C" ~ (temp * 9/5) + 32,
-          TRUE ~ (temp - 273.15) * 9/5 + 32)
+
+
case_when(unit == "F" ~ temp,
+          unit == "C" ~ (temp * 9/5) + 32,
+          TRUE ~ (temp - 273.15) * 9/5 + 32)
[1] 45.20 56.30 51.80 53.33
-

The last parameter, TRUE ~, applies to all conditions not satisfied by the previous two conditions (otherwise, not doing so would return NA values).

+

The last argument, TRUE ~, applies to all conditions not satisfied by the previous two conditions (otherwise, not doing so would return NA values by default). You only need to add a TRUE ~ condition if you know that all previously listed conditions may not cover all possible outcomes. Here, we know that some observations are associated with unit == "K" yet that condition is not explicitly defined in the case_when arguments. We could have, of course, added the unit == "K" condition to the above code chunk thus alleviating the need for the TRUE ~ condition.

Note that the order in which these conditions are listed matters since evaluation stops at the first TRUE outcome encountered. So, had the last condition been moved to the top of the stack, all temp values would be assigned the first conversion option.

-
-
# What not to do ...
-case_when(TRUE ~ (temp - 273.15) * 9/5 + 32,
-          unit == "F" ~ temp,
-          unit == "C" ~ (temp * 9/5) + 32)
+
+
# What not to do ...
+case_when(TRUE ~ (temp - 273.15) * 9/5 + 32,
+          unit == "F" ~ temp,
+          unit == "C" ~ (temp * 9/5) + 32)
[1] -378.31 -358.33 -439.87   53.33

Note that case_when can also be used inside of a mutate function. For example, to replace Canada and United States of America in variable Country with CAN and USA respectively and to create a new variable called Type which will take on the values of 1, 2 or 3 depending on the values in variable Source, type the following:

-
-
dat1 <- dat %>% 
-  mutate(Country = case_when(Country == "Canada" ~ "CAN",
-                             Country == "United States of America" ~ "USA"),
-         Type = case_when(Source == "Calculated data" ~ 1,
-                          Source == "Official data" ~ 2,
-                          TRUE ~ 3)) 
-head(dat1)   
+
+
dat1 <- dat %>% 
+  mutate(Country = case_when(Country == "Canada" ~ "CAN",
+                             Country == "United States of America" ~ "USA"),
+         Type = case_when(Source == "Calculated data" ~ 1,
+                          Source == "Official data" ~ 2,
+                          TRUE ~ 3)) 
+head(dat1)   
  Country         Crop         Information Year      Value          Source Type
 1     CAN       Barley Area harvested (Ha) 2012 2060000.00   Official data    2
@@ -1070,38 +1048,47 @@ 

9.4 Replacing values with NA

-

You can replace a specific set of values (numeric or character) using the na_if() function. For example, to replace -999 with NA:

-
-
val <- c(-999, 6, -1, -999)
-na_if( val , -999 )
+

So far, we’ve used the ifelse or if_else functions to replace certain values with NA. dplyr offers the na_if() function to simplify the syntax. For example, to replace -999 with NA:

+
+
val <- c(-999, 6, -1, -999)
+na_if( val , -999 )
[1] NA  6 -1 NA

Likewise, to replace all empty character values:

-
-
val <- c("ab", "", "A b", "  ")
-na_if( val , "" )
+
+
val <- c("ab", "", "A b", "  ")
+na_if( val , "" )
[1] "ab"  NA    "A b" "  " 
-

Note that na_if() will return the datatype passed to its first argument and not necessarily that of the parent vector. For example, if you use stringr’s str_length() function to identify zero length vectors in a character vector, you get a numeric output.

-
-
library(stringr)
-val <- c("ab", "", "A b", "  ")
-na_if( str_length(val) , 0 )
+

na_if will also preserve the object’s class. For example:

+
+
x <- as.factor( c("apple", "walnut", "banana", "pear", "apple"))
+na_if(x , "walnut")
+
+
[1] apple  <NA>   banana pear   apple 
+Levels: apple banana pear walnut
+
+
+

But, note that it does not automatically drop the level being replaced with NA.

+

na_if also works with dates, but don’t forget to evaluate a date object with a date value. For example, to replace dates of 12/1/1901 with NA, we need to make a date object of that value. Here, we’ll make use of the mdy() function as in mdy("12/1/1901").

+
+
y <- mdy("1/23/2016", "3/2/2016", "12/1/1901", "11/23/2016")
+na_if(y, mdy("12/1/1901"))
-
[1]  2 NA  3  2
+
[1] "2016-01-23" "2016-03-02" NA           "2016-11-23"

To use na_if() in a piping operation, it needs to be embedded in a mutate() function. For example, to replace "Calculated data" with NA in the dat dataframe, type:

-
-
dat1 <- dat %>% 
-    mutate(Source = na_if(Source, "Calculated data" ))
+
+
dat1 <- dat %>% 
+    mutate(Source = na_if(Source, "Calculated data" ))
-
-
unique(dat1$Source)
+
+
unique(dat1$Source)
[1] "Official data"                           
 [2] NA                                        
@@ -1112,51 +1099,52 @@ 

9.5 Outputting a vector instead of a table using pull

-

Piping operations will output a table, even if a single value is returned. For example, the following summarization operation returns the total oats yield as a data table:

-
-
oats <- dat %>% 
-  filter(Crop == "Oats",
-         Information == "Yield (Hg/Ha)") %>% 
-  summarise(Oats_sum = sum(Value))
-oats
+

Piping operations will output a table, even if a single value is returned. For example, the following summarization operation returns the total oats yield as a dataframe:

+
+
oats <- dat %>% 
+  filter(Crop == "Oats",
+         Information == "Yield (Hg/Ha)") %>% 
+  summarise(Oats_sum = sum(Value))
+oats
  Oats_sum
 1  2169334
-
class(oats)
+
class(oats)
[1] "data.frame"
-

There may be times when you want to output as a vector element and not a data table. To output a vector, use the pull() function.

-
-
oats <- dat %>% 
-  filter(Crop == "Oats",
-         Information == "Yield (Hg/Ha)") %>% 
-  summarise(Oats_sum = sum(Value)) %>% 
-  pull()
-oats
+

There may be times when you want to output a vector element and not a dataframe. To output a vector, use the pull() function.

+
+
oats <- dat %>% 
+  filter(Crop == "Oats",
+         Information == "Yield (Hg/Ha)") %>% 
+  summarise(Oats_sum = sum(Value)) %>% 
+  pull()
+oats
[1] 2169334
-
class(oats)
+
class(oats)
[1] "numeric"
-

The pull function can also be used explicitly define the column to extract. For example, to extract the Value column type:

-
-
# This outputs a multi-element vector
-yield <- dat %>% 
-  filter(Crop == "Oats",
-         Information == "Yield (Hg/Ha)") %>% 
-  pull(Value)
-
-head(yield)
+

The pull function can also be used to explicitly define the column to extract. For example, to extract the Value column type:

+
+
# This outputs a multi-element vector
+yield <- dat %>% 
+  filter(Crop == "Oats",
+         Information == "Yield (Hg/Ha)") %>% 
+  pull(Value)
+
+
+
head(yield)
[1] 24954.79 21974.70 29109.36 20492.37 27364.53 23056.62
-
class(yield)
+
class(yield)
[1] "numeric"
diff --git a/docs/ggplot2.html b/docs/ggplot2.html index fa4cc394..c3b30c6d 100644 --- a/docs/ggplot2.html +++ b/docs/ggplot2.html @@ -336,7 +336,7 @@ @@ -498,28 +498,28 @@

15  - dplyr - ggplot2 - forcats - 15  1.1.4 - 3.4.4 - 1.0.0 - @@ -468,7 +468,7 @@

12  - 12  @@ -471,7 +471,7 @@

14  - 14  - + @@ -338,7 +338,7 @@ @@ -904,7 +904,7 @@

- + 23  A working example: t-tests and re-expression

diff --git a/docs/re_express.html b/docs/re_express.html index 10ee8c42..d2430a71 100755 --- a/docs/re_express.html +++ b/docs/re_express.html @@ -338,7 +338,7 @@ diff --git a/docs/read_write_files.html b/docs/read_write_files.html index 05c67f82..0c8e6731 100644 --- a/docs/read_write_files.html +++ b/docs/read_write_files.html @@ -336,7 +336,7 @@ @@ -476,14 +476,14 @@

4  - readxl - 4  1.4.3 - You can save an entire R session (which includes all data objects) using the save function.

To save all objects, set the list= parameter to ls():

-
save(list = ls(), file = "ACS_all.Rdata")
+
save(list=ls(), file = "ACS_all.Rdata")

To save only two R session objects–dat and dat.sub–to a file, pass the list of objects to the list= parameter:

-
save(list = c(dat, dat.sub), file = "ACS_subset.Rdata")
+
save(list=c(dat, dat.sub), file = "ACS_subset.Rdata")

diff --git a/docs/rf.html b/docs/rf.html index e02f6210..db4d5542 100644 --- a/docs/rf.html +++ b/docs/rf.html @@ -336,7 +336,7 @@ diff --git a/docs/search.json b/docs/search.json index 4b0351c1..afe4977e 100755 --- a/docs/search.json +++ b/docs/search.json @@ -305,21 +305,21 @@ "href": "dplyr.html#conditional-statements", "title": "9  Manipulating data tables with dplyr", "section": "9.3 Conditional statements", - "text": "9.3 Conditional statements\n  \n\n9.3.1 The base ifelse\nConditional statements are used when you want to create an output value that is conditioned on an evaluation. For example, if you want to output a value of 1 if an input value is less than 23 and a value of 0 otherwise, you can make use of the ifelse function as follows:\n\nx <- c(12,102, 43, 20, 90, 0, 12, 6)\nifelse(x < 23, 1, 0)\n\n[1] 1 0 0 1 0 1 1 1\n\n\nifelse takes three arguments:\n\nThe condition to evaluate (x < 23 in the above example);\nThe value to output if the condition is TRUE (1 in our example);\nThe value to output if the condition is FALSE (0 in our example).\n\nThe base ifelse function works as expected when the input/output values are numeric or character, but it does not work as expected when applied to factors or dates. For example, if you wish to replace one factor level with another, the following example will not return the expected output.\n\nx <- as.factor( c(\"apple\", \"banana\", \"banana\", \"pear\", \"apple\"))\nifelse(x == \"pear\", \"apple\", x)\n\n[1] \"1\" \"2\" \"2\" \"apple\" \"1\" \n\n\nThe output is a character representation of the level number (recall that factors encode level values as numbers behind the scenes, i.e. apple =1, banana=2, etc…). Likewise, if you wish to replace an erroneous date with a missing value you will get:\n\nlibrary(lubridate)\ny <- mdy(\"1/23/2016\", \"3/2/2016\", \"12/1/1901\", \"11/23/2016\")\nifelse( year(y) != 2016, NA, y)\n\n[1] 16823 16862 NA 17128\n\n\nHere, ifelse converts the date object to its internal numeric representation as number of days since 1970.\n\n\n9.3.2 dplyr’s if_else\nifelse does not preserve the attributes that might be present in a vector. In other words, it will strip away the vector’s class. If you want to ensure that the vector’s class is preserved, a safer alternative is to use dplyr’s if_else function.\nReworking the above examples:\n\nif_else( year(y) != 2016, NA, y)\n\n[1] \"2016-01-23\" \"2016-03-02\" NA \"2016-11-23\"\n\n\n\nif_else(x == \"pear\", \"apple\", x)\n\n[1] \"apple\" \"banana\" \"banana\" \"apple\" \"apple\" \n\n\nNote that when working with factors, however, if_else will strip the factor class of an input factor. dplyr offers a recode function for this purpose however, this function is being superseded according to the documentation as of version 1.1.4. The workaround is to convert the if_else output to a factor.\n\nas.factor(if_else(x == \"pear\", \"apple\", x))\n\n[1] apple banana banana apple apple \nLevels: apple banana\n\n\n\n9.3.2.1 Note on replacing NA factor levels\nOne operation you cannot perform with if_else is converting an NA level to another factor level. For example, let’s add an NA value to the x factor:\n\nx[2] <- NA\nx\n\n[1] apple <NA> banana pear apple \nLevels: apple banana pear\n\n\nIf we want to replace NA with banana the following will generate an unexpected output.\n\nif_else( x == NA, \"banana\", x)\n\n[1] NA NA NA NA NA\n\n\nTo evaluate if a value is NA, use the is.na() function as in:\n\nif_else( is.na(x), \"banana\", x)\n\n[1] \"apple\" \"banana\" \"banana\" \"pear\" \"apple\" \n\n\n\n\n\n9.3.3 Changing values based on multiple conditions: case_when\nifelse and if_else work great when a single set of conditions is to be satisfied. But if multiple sets of conditions are to be tested, nested if/else statements become cumbersome and are prone to clerical error. The following code highlights an example of nested if/else statements.\n\nunit <- c(\"F\",\"F\",\"C\", \"K\")\nif_else( unit == \"C\", \"Celsius\", if_else(unit == \"F\", \"Fahrenheit\", \"Kelvin\"))\n\n[1] \"Fahrenheit\" \"Fahrenheit\" \"Celsius\" \"Kelvin\" \n\n\nA simpler solution is to use the case_when function.\n\ncase_when(unit == \"C\" ~ \"Celsius\",\n unit == \"F\" ~ \"Fahrenheit\",\n unit == \"K\" ~ \"Kelvin\")\n\n[1] \"Fahrenheit\" \"Fahrenheit\" \"Celsius\" \"Kelvin\" \n\n\ncase_when can aso be used for more complex operations. For example, given two vectors, unit and temp, we would like to convert all temp values to Fahrenheit by applying a temperature conversion dependent on the unit value.\n\ntemp <- c(45.2, 56.3, 11.0, 285)\n\n\ncase_when(unit == \"F\" ~ temp,\n unit == \"C\" ~ (temp * 9/5) + 32,\n TRUE ~ (temp - 273.15) * 9/5 + 32)\n\n[1] 45.20 56.30 51.80 53.33\n\n\nThe last parameter, TRUE ~, applies to all conditions not satisfied by the previous two conditions (otherwise, not doing so would return NA values).\nNote that the order in which these conditions are listed matters since evaluation stops at the first TRUE outcome encountered. So, had the last condition been moved to the top of the stack, all temp values would be assigned the first conversion option.\n\n# What not to do ...\ncase_when(TRUE ~ (temp - 273.15) * 9/5 + 32,\n unit == \"F\" ~ temp,\n unit == \"C\" ~ (temp * 9/5) + 32)\n\n[1] -378.31 -358.33 -439.87 53.33\n\n\nNote that case_when can also be used inside of a mutate function. For example, to replace Canada and United States of America in variable Country with CAN and USA respectively and to create a new variable called Type which will take on the values of 1, 2 or 3 depending on the values in variable Source, type the following:\n\ndat1 <- dat %>% \n mutate(Country = case_when(Country == \"Canada\" ~ \"CAN\",\n Country == \"United States of America\" ~ \"USA\"),\n Type = case_when(Source == \"Calculated data\" ~ 1,\n Source == \"Official data\" ~ 2,\n TRUE ~ 3)) \nhead(dat1) \n\n Country Crop Information Year Value Source Type\n1 CAN Barley Area harvested (Ha) 2012 2060000.00 Official data 2\n2 CAN Barley Yield (Hg/Ha) 2012 38894.66 Calculated data 1\n3 CAN Buckwheat Area harvested (Ha) 2012 0.00 FAO estimate 3\n4 CAN Canary seed Area harvested (Ha) 2012 101900.00 Official data 2\n5 CAN Canary seed Yield (Hg/Ha) 2012 12161.92 Calculated data 1\n6 CAN Grain, mixed Area harvested (Ha) 2012 57900.00 Official data 2" + "text": "9.3 Conditional statements\n  \n\n9.3.1 The base ifelse\nConditional statements are used when you want to create an output value that is conditioned on an evaluation. For example, if you want to output a value of 1 if an input value is less than 23 and a value of 0 otherwise, you can make use of the ifelse function as follows:\n\nx <- c(12,102, 43, 20, 90, 0, 12, 6)\nifelse(x < 23, 1, 0)\n\n[1] 1 0 0 1 0 1 1 1\n\n\nifelse takes three arguments:\n\nThe condition to evaluate (x < 23 in the above example);\nThe value to output if the condition is TRUE (1 in our example);\nThe value to output if the condition is FALSE (0 in our example).\n\nThe base ifelse function works as expected when the input/output values are numeric or character, but it does not work as expected when applied to factors or dates. For example, if you wish to replace one factor level with another, the following example will not return the expected output.\n\nx <- as.factor( c(\"apple\", \"banana\", \"banana\", \"pear\", \"apple\"))\nifelse(x == \"pear\", \"apple\", x)\n\n[1] \"1\" \"2\" \"2\" \"apple\" \"1\" \n\n\nThe output is a character representation of the level number (recall that factors encode level values as numbers behind the scenes, i.e. apple =1, banana=2, etc…). Likewise, if you wish to replace an erroneous date you will get:\n\nlibrary(lubridate)\ny <- mdy(\"1/23/2016\", \"3/2/2016\", \"12/1/1901\", \"11/23/2016\")\nifelse( y == mdy(\"12/1/1901\"), mdy(\"12/1/2016\"), y)\n\n[1] 16823 16862 17136 17128\n\n\nHere, ifelse converts the date object to its internal numeric representation as number of days since 1970.\n\n\n9.3.2 dplyr’s if_else\nifelse does not preserve the attributes that might be present in a vector. In other words, it will strip away the vector’s class. A safer alternative is to use dplyr’s if_else function.\nReworking the above examples:\n\nif_else( y == mdy(\"12/1/1901\"), mdy(\"12/1/2016\"), y)\n\n[1] \"2016-01-23\" \"2016-03-02\" \"2016-12-01\" \"2016-11-23\"\n\n\nThe date class is preserved. Now let’s check the output of a factor.\n\nif_else(x == \"pear\", \"apple\", x)\n\n[1] \"apple\" \"banana\" \"banana\" \"apple\" \"apple\" \n\n\nNote that when working with factors, however, if_else will strip the factor class of an input factor. But, instead of returning the factor’s underlying integer values, it outputs the associated levels as a character data type.\nThe workaround is to convert the if_else output to a factor.\n\nfactor(if_else(x == \"pear\", \"apple\", x))\n\n[1] apple banana banana apple apple \nLevels: apple banana\n\n\nIf you need to explicitly define the levels, add the levels = c(\"pear\",...).\nNOTE: dplyr offers the recode function that preserves factors however, this function is being superseded according to the documentation as of version 1.1.4.\n\n\n9.3.3 Changing values based on multiple conditions: case_when\nifelse and if_else work great when a single set of conditions is to be satisfied. But, if multiple sets of conditions are to be evaluated, nested if/else statements become cumbersome and are prone to clerical error. The following code highlights an example of nested if/else statements.\n\nunit <- c(\"F\",\"F\",\"C\", \"K\")\nif_else( unit == \"C\", \"Celsius\", if_else(unit == \"F\", \"Fahrenheit\", \"Kelvin\"))\n\n[1] \"Fahrenheit\" \"Fahrenheit\" \"Celsius\" \"Kelvin\" \n\n\nA simpler solution is to use the case_when function.\n\ncase_when(unit == \"C\" ~ \"Celsius\",\n unit == \"F\" ~ \"Fahrenheit\",\n unit == \"K\" ~ \"Kelvin\")\n\n[1] \"Fahrenheit\" \"Fahrenheit\" \"Celsius\" \"Kelvin\" \n\n\ncase_when can aso be used for more complex operations. For example, given two vectors, unit and temp, we would like to convert all temp values to Fahrenheit by applying a temperature conversion dependent on the unit value.\n\ntemp <- c(45.2, 56.3, 11.0, 285)\n\n\ncase_when(unit == \"F\" ~ temp,\n unit == \"C\" ~ (temp * 9/5) + 32,\n TRUE ~ (temp - 273.15) * 9/5 + 32)\n\n[1] 45.20 56.30 51.80 53.33\n\n\nThe last argument, TRUE ~, applies to all conditions not satisfied by the previous two conditions (otherwise, not doing so would return NA values by default). You only need to add a TRUE ~ condition if you know that all previously listed conditions may not cover all possible outcomes. Here, we know that some observations are associated with unit == \"K\" yet that condition is not explicitly defined in the case_when arguments. We could have, of course, added the unit == \"K\" condition to the above code chunk thus alleviating the need for the TRUE ~ condition.\nNote that the order in which these conditions are listed matters since evaluation stops at the first TRUE outcome encountered. So, had the last condition been moved to the top of the stack, all temp values would be assigned the first conversion option.\n\n# What not to do ...\ncase_when(TRUE ~ (temp - 273.15) * 9/5 + 32,\n unit == \"F\" ~ temp,\n unit == \"C\" ~ (temp * 9/5) + 32)\n\n[1] -378.31 -358.33 -439.87 53.33\n\n\nNote that case_when can also be used inside of a mutate function. For example, to replace Canada and United States of America in variable Country with CAN and USA respectively and to create a new variable called Type which will take on the values of 1, 2 or 3 depending on the values in variable Source, type the following:\n\ndat1 <- dat %>% \n mutate(Country = case_when(Country == \"Canada\" ~ \"CAN\",\n Country == \"United States of America\" ~ \"USA\"),\n Type = case_when(Source == \"Calculated data\" ~ 1,\n Source == \"Official data\" ~ 2,\n TRUE ~ 3)) \nhead(dat1) \n\n Country Crop Information Year Value Source Type\n1 CAN Barley Area harvested (Ha) 2012 2060000.00 Official data 2\n2 CAN Barley Yield (Hg/Ha) 2012 38894.66 Calculated data 1\n3 CAN Buckwheat Area harvested (Ha) 2012 0.00 FAO estimate 3\n4 CAN Canary seed Area harvested (Ha) 2012 101900.00 Official data 2\n5 CAN Canary seed Yield (Hg/Ha) 2012 12161.92 Calculated data 1\n6 CAN Grain, mixed Area harvested (Ha) 2012 57900.00 Official data 2" }, { "objectID": "dplyr.html#replacing-values-with-na", "href": "dplyr.html#replacing-values-with-na", "title": "9  Manipulating data tables with dplyr", "section": "9.4 Replacing values with NA", - "text": "9.4 Replacing values with NA\nYou can replace a specific set of values (numeric or character) using the na_if() function. For example, to replace -999 with NA:\n\nval <- c(-999, 6, -1, -999)\nna_if( val , -999 )\n\n[1] NA 6 -1 NA\n\n\nLikewise, to replace all empty character values:\n\nval <- c(\"ab\", \"\", \"A b\", \" \")\nna_if( val , \"\" )\n\n[1] \"ab\" NA \"A b\" \" \" \n\n\nNote that na_if() will return the datatype passed to its first argument and not necessarily that of the parent vector. For example, if you use stringr’s str_length() function to identify zero length vectors in a character vector, you get a numeric output.\n\nlibrary(stringr)\nval <- c(\"ab\", \"\", \"A b\", \" \")\nna_if( str_length(val) , 0 )\n\n[1] 2 NA 3 2\n\n\nTo use na_if() in a piping operation, it needs to be embedded in a mutate() function. For example, to replace \"Calculated data\" with NA in the dat dataframe, type:\n\ndat1 <- dat %>% \n mutate(Source = na_if(Source, \"Calculated data\" ))\n\n\nunique(dat1$Source)\n\n[1] \"Official data\" \n[2] NA \n[3] \"FAO estimate\" \n[4] \"FAO data based on imputation methodology\"" + "text": "9.4 Replacing values with NA\nSo far, we’ve used the ifelse or if_else functions to replace certain values with NA. dplyr offers the na_if() function to simplify the syntax. For example, to replace -999 with NA:\n\nval <- c(-999, 6, -1, -999)\nna_if( val , -999 )\n\n[1] NA 6 -1 NA\n\n\nLikewise, to replace all empty character values:\n\nval <- c(\"ab\", \"\", \"A b\", \" \")\nna_if( val , \"\" )\n\n[1] \"ab\" NA \"A b\" \" \" \n\n\nna_if will also preserve the object’s class. For example:\n\nx <- as.factor( c(\"apple\", \"walnut\", \"banana\", \"pear\", \"apple\"))\nna_if(x , \"walnut\")\n\n[1] apple <NA> banana pear apple \nLevels: apple banana pear walnut\n\n\nBut, note that it does not automatically drop the level being replaced with NA.\nna_if also works with dates, but don’t forget to evaluate a date object with a date value. For example, to replace dates of 12/1/1901 with NA, we need to make a date object of that value. Here, we’ll make use of the mdy() function as in mdy(\"12/1/1901\").\n\ny <- mdy(\"1/23/2016\", \"3/2/2016\", \"12/1/1901\", \"11/23/2016\")\nna_if(y, mdy(\"12/1/1901\"))\n\n[1] \"2016-01-23\" \"2016-03-02\" NA \"2016-11-23\"\n\n\nTo use na_if() in a piping operation, it needs to be embedded in a mutate() function. For example, to replace \"Calculated data\" with NA in the dat dataframe, type:\n\ndat1 <- dat %>% \n mutate(Source = na_if(Source, \"Calculated data\" ))\n\n\nunique(dat1$Source)\n\n[1] \"Official data\" \n[2] NA \n[3] \"FAO estimate\" \n[4] \"FAO data based on imputation methodology\"" }, { "objectID": "dplyr.html#outputting-a-vector-instead-of-a-table-using-pull", "href": "dplyr.html#outputting-a-vector-instead-of-a-table-using-pull", "title": "9  Manipulating data tables with dplyr", "section": "9.5 Outputting a vector instead of a table using pull", - "text": "9.5 Outputting a vector instead of a table using pull\nPiping operations will output a table, even if a single value is returned. For example, the following summarization operation returns the total oats yield as a data table:\n\noats <- dat %>% \n filter(Crop == \"Oats\",\n Information == \"Yield (Hg/Ha)\") %>% \n summarise(Oats_sum = sum(Value))\noats\n\n Oats_sum\n1 2169334\n\nclass(oats)\n\n[1] \"data.frame\"\n\n\nThere may be times when you want to output as a vector element and not a data table. To output a vector, use the pull() function.\n\noats <- dat %>% \n filter(Crop == \"Oats\",\n Information == \"Yield (Hg/Ha)\") %>% \n summarise(Oats_sum = sum(Value)) %>% \n pull()\noats\n\n[1] 2169334\n\nclass(oats)\n\n[1] \"numeric\"\n\n\nThe pull function can also be used explicitly define the column to extract. For example, to extract the Value column type:\n\n# This outputs a multi-element vector\nyield <- dat %>% \n filter(Crop == \"Oats\",\n Information == \"Yield (Hg/Ha)\") %>% \n pull(Value)\n\nhead(yield)\n\n[1] 24954.79 21974.70 29109.36 20492.37 27364.53 23056.62\n\nclass(yield)\n\n[1] \"numeric\"" + "text": "9.5 Outputting a vector instead of a table using pull\nPiping operations will output a table, even if a single value is returned. For example, the following summarization operation returns the total oats yield as a dataframe:\n\noats <- dat %>% \n filter(Crop == \"Oats\",\n Information == \"Yield (Hg/Ha)\") %>% \n summarise(Oats_sum = sum(Value))\noats\n\n Oats_sum\n1 2169334\n\nclass(oats)\n\n[1] \"data.frame\"\n\n\nThere may be times when you want to output a vector element and not a dataframe. To output a vector, use the pull() function.\n\noats <- dat %>% \n filter(Crop == \"Oats\",\n Information == \"Yield (Hg/Ha)\") %>% \n summarise(Oats_sum = sum(Value)) %>% \n pull()\noats\n\n[1] 2169334\n\nclass(oats)\n\n[1] \"numeric\"\n\n\nThe pull function can also be used to explicitly define the column to extract. For example, to extract the Value column type:\n\n# This outputs a multi-element vector\nyield <- dat %>% \n filter(Crop == \"Oats\",\n Information == \"Yield (Hg/Ha)\") %>% \n pull(Value)\n\n\nhead(yield)\n\n[1] 24954.79 21974.70 29109.36 20492.37 27364.53 23056.62\n\nclass(yield)\n\n[1] \"numeric\"" }, { "objectID": "group_by.html#summarizing-data-by-group", diff --git a/docs/strings.html b/docs/strings.html index 96b822e3..98d75bdd 100644 --- a/docs/strings.html +++ b/docs/strings.html @@ -336,7 +336,7 @@ @@ -485,7 +485,7 @@

6  - 6  @@ -466,14 +466,14 @@

8  - - 8  R - 4.3.2 + border-radius: 5px;width:5px;"> 4.3.1 diff --git a/docs/theoretical_qq.html b/docs/theoretical_qq.html index c076c753..1e505867 100644 --- a/docs/theoretical_qq.html +++ b/docs/theoretical_qq.html @@ -338,7 +338,7 @@ diff --git a/docs/tidyr.html b/docs/tidyr.html index 6d510ea6..ffbdb344 100644 --- a/docs/tidyr.html +++ b/docs/tidyr.html @@ -336,7 +336,7 @@ @@ -486,7 +486,7 @@

11  - 11  1.3.1 + border-radius: 5px;"> 1.3.0 diff --git a/docs/univariate_plots.html b/docs/univariate_plots.html index a602b480..47732d4c 100644 --- a/docs/univariate_plots.html +++ b/docs/univariate_plots.html @@ -338,7 +338,7 @@ @@ -478,21 +478,21 @@

16  - dplyr - ggplot2 - 16  1.1.4 - 3.4.4 - 1.3.1 + border-radius: 5px;"> 1.3.0 diff --git a/dplyr.qmd b/dplyr.qmd index ea48a525..53a14e7c 100755 --- a/dplyr.qmd +++ b/dplyr.qmd @@ -276,12 +276,12 @@ x <- as.factor( c("apple", "banana", "banana", "pear", "apple")) ifelse(x == "pear", "apple", x) ``` -The output is a character representation of the level number (recall that factors encode level values as numbers behind the scenes, i.e. `apple` =1, `banana`=2, etc...). Likewise, if you wish to replace an erroneous date with a missing value you will get: +The output is a character representation of the level number (recall that factors encode level values as numbers behind the scenes, i.e. `apple` =1, `banana`=2, etc...). Likewise, if you wish to replace an erroneous date you will get: ```{r} library(lubridate) y <- mdy("1/23/2016", "3/2/2016", "12/1/1901", "11/23/2016") -ifelse( year(y) != 2016, NA, y) +ifelse( y == mdy("12/1/1901"), mdy("12/1/2016"), y) ``` Here, `ifelse` converts the date object to its internal numeric representation as number of days since 1970. @@ -289,49 +289,36 @@ Here, `ifelse` converts the date object to its internal numeric representation a ### `dplyr`'s `if_else` -`ifelse` does not preserve the attributes that might be present in a vector. In other words, it will strip away the vector's `class`. If you want to ensure that the vector's `class` is preserved, a safer alternative is to use `dplyr`'s `if_else` function. +`ifelse` does not preserve the attributes that might be present in a vector. In other words, it will strip away the vector's `class`. A safer alternative is to use `dplyr`'s `if_else` function. Reworking the above examples: ```{r} -if_else( year(y) != 2016, NA, y) +if_else( y == mdy("12/1/1901"), mdy("12/1/2016"), y) ``` -```{r error=TRUE} -if_else(x == "pear", "apple", x) -``` - -Note that when working with factors, however, `if_else` will strip the `factor` class of an input factor. `dplyr` offers a `recode` function for this purpose however, this function is being superseded according to the documentation as of version `1.1.4`. The workaround is to convert the `if_else` output to a factor. +The date class is preserved. Now let's check the output of a factor. ```{r error=TRUE} -as.factor(if_else(x == "pear", "apple", x)) +if_else(x == "pear", "apple", x) ``` -#### Note on replacing NA factor levels +Note that when working with factors, however, `if_else` will strip the `factor` class of an input factor. But, instead of returning the factor's underlying integer values, it outputs the associated levels as a `character` data type. -One operation you cannot perform with `if_else` is converting an `NA` level to another factor level. For example, let's add an `NA` value to the `x` factor: +The workaround is to convert the `if_else` output to a factor. -```{r} -x[2] <- NA -x +```{r error=TRUE} +factor(if_else(x == "pear", "apple", x)) ``` -If we want to replace `NA` with `banana` the following will generate an unexpected output. - - -```{r} -if_else( x == NA, "banana", x) -``` +If you need to explicitly define the levels, add the `levels = c("pear",...)`. -To evaluate if a value is `NA`, use the `is.na()` function as in: +NOTE: `dplyr` offers the `recode` function that preserves factors however, this function is being superseded according to the documentation as of version `1.1.4`. -```{r} -if_else( is.na(x), "banana", x) -``` ### Changing values based on multiple conditions: `case_when` -`ifelse` and `if_else` work great when a single set of conditions is to be satisfied. But if multiple sets of conditions are to be tested, nested if/else statements become cumbersome and are prone to clerical error. The following code highlights an example of nested if/else statements. +`ifelse` and `if_else` work great when a single set of conditions is to be satisfied. But, if multiple sets of conditions are to be evaluated, nested if/else statements become cumbersome and are prone to clerical error. The following code highlights an example of nested if/else statements. ```{r} unit <- c("F","F","C", "K") @@ -359,7 +346,7 @@ case_when(unit == "F" ~ temp, TRUE ~ (temp - 273.15) * 9/5 + 32) ``` -The last parameter, `TRUE ~ `, applies to all conditions not satisfied by the previous two conditions (otherwise, not doing so would return `NA` values). +The last argument, `TRUE ~ `, applies to all conditions not satisfied by the previous two conditions (otherwise, not doing so would return `NA` values by default). You only need to add a `TRUE ~` condition if you know that all previously listed conditions may not cover all possible outcomes. Here, we know that some observations are associated with `unit == "K"` yet that condition is not explicitly defined in the `case_when` arguments. We could have, of course, added the `unit == "K"` condition to the above code chunk thus alleviating the need for the `TRUE ~` condition. Note that the order in which these conditions are listed matters since evaluation stops at the first `TRUE` outcome encountered. So, had the last condition been moved to the top of the stack, all `temp` values would be assigned the first conversion option. @@ -387,7 +374,7 @@ head(dat1) ## Replacing values with `NA` -You can replace a specific set of values (numeric or character) using the `na_if()` function. For example, to replace `-999` with `NA`: +So far, we've used the `ifelse` or `if_else` functions to replace certain values with `NA`. `dplyr` offers the `na_if()` function to simplify the syntax. For example, to replace `-999` with `NA`: ```{r} val <- c(-999, 6, -1, -999) @@ -401,12 +388,20 @@ val <- c("ab", "", "A b", " ") na_if( val , "" ) ``` -Note that `na_if()` will return the datatype passed to its first argument and not necessarily that of the parent vector. For example, if you use `stringr`'s `str_length()` function to identify zero length vectors in a character vector, you get a numeric output. +`na_if` will also preserve the object's class. For example: ```{r} -library(stringr) -val <- c("ab", "", "A b", " ") -na_if( str_length(val) , 0 ) +x <- as.factor( c("apple", "walnut", "banana", "pear", "apple")) +na_if(x , "walnut") +``` + +But, note that it does not automatically drop the level being replaced with `NA`. + +`na_if` also works with dates, but don't forget to evaluate a date object with a date value. For example, to replace dates of `12/1/1901` with `NA`, we need to make a date object of that value. Here, we'll make use of the `mdy()` function as in `mdy("12/1/1901")`. + +```{r} +y <- mdy("1/23/2016", "3/2/2016", "12/1/1901", "11/23/2016") +na_if(y, mdy("12/1/1901")) ``` To use `na_if()` in a piping operation, it needs to be embedded in a `mutate()` function. For example, to replace `"Calculated data"` with `NA` in the `dat` dataframe, type: @@ -422,7 +417,7 @@ unique(dat1$Source) ## Outputting a vector instead of a table using `pull` -Piping operations will output a table, even if a single value is returned. For example, the following summarization operation returns the total oats yield as a data table: +Piping operations will output a table, even if a single value is returned. For example, the following summarization operation returns the total oats yield as a dataframe: ```{r} oats <- dat %>% @@ -433,7 +428,7 @@ oats class(oats) ``` -There may be times when you want to output as a vector element and not a data table. To output a vector, use the `pull()` function. +There may be times when you want to output a vector element and not a dataframe. To output a vector, use the `pull()` function. ```{r} oats <- dat %>% @@ -446,7 +441,7 @@ oats class(oats) ``` -The `pull` function can also be used explicitly define the column to extract. For example, to extract the `Value` column type: +The `pull` function can also be used to explicitly define the column to extract. For example, to extract the `Value` column type: ```{r} @@ -455,8 +450,10 @@ yield <- dat %>% filter(Crop == "Oats", Information == "Yield (Hg/Ha)") %>% pull(Value) +``` +```{r} head(yield) - class(yield) ``` + diff --git a/dplyr_cache/html/unnamed-chunk-1_e3ba058d8070d51d61096aadebc5455c.RData b/dplyr_cache/html/unnamed-chunk-1_e3ba058d8070d51d61096aadebc5455c.RData deleted file mode 100644 index 3d1e79d4bdea38b61a25c936a83413e294fd357d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 161 zcmV;S0ABweiwFP!000001`BeDFy@NjVqjokW?*4vVqj(kG8tGyL)>&N7#LWXfE-2! z76wir?WC7dkW*O{pPZPSk*c3jlAEJnnwOWDo0_7VoKc#Wt!o&cYMhj4U}}+KVPI~M zVrrOTW@un(mYA55nv`s6VrrTUG(`Z(#7HYED}`#kYpSn$(eXpyDu%JaSr0Hwa@XA4yv03EFUJb7A>a5$p(i9w zL790rrb}%nF~n*l;uDzZ)RI-=s`g#XsN$0X#5N%NBMf2N7h%AeujJ+|7L3Yk*T^Sb zLYqrf06vn#q!2CmYC%TBKznL5bv^UIf7kw*%1HhV(W` zN5o}ScTV1(EX|LS?av3LtIRg6(XVCt+1mgUTH?@Be{8gIr8V$QoGM$}+Sb~}-f zEZ>GJYvnXhTSD)E7|)L*YaPjAgWh&Uuhl*Td1hC!%d&iZCXwr`?*!G&4V z#_?G;4D2pV|43b5%2mAmxF>*6@X*U>jHKX0ud@Vz(d9- z9%@~S7<`J}3qsK+5Uo?x`WVp=UE@%;3}%E0(S7pLP#fiQkek-ud-X3!VEw^gpjpn6 zeWxCJ(eBWp;hxpN1x#2hJ#-e0&(~Z3Wd8MJt$z2j*y^XrS{tq|E<2ZL$|iJXxWcbbO8+W|D!EsUuB(8h5bS9DHe7wKOVgNNG;M2lM=#% zIiYxU{xo;Qf|I6e;-rN$mJ%m^pZ9q`ZGY)mmStNzcGI$3 z`qOHC{&eLGEWM(Ce(SlZ=Z3Xob<=sSU%&Kor=NCF@I$|v#$tz(k$_^6i&o3MDI8IJ zIadN2^qp^5jF`kJC|h2RyEV6+7-TKP=|U`dT1i>4%zYaZtmvWuX&8|G85EK0vnZg% zS8}r#_ZrRDj^R%lf+Q@e0k=4m3fBl4&kd69wOgjSrwHL!Cd$q{$WyXcNli$i6}S|q zEiu>A!=ejrPFf)DCUrqXFvM~x=p_Y(65I6#rWK&A!*fwk!@mcmi=cvTAhaRF&NfP$ z#j1wSK6!hxUVfZx|30V=E>ubwd?#rt zoZA=*#T-OrigUPNK9-V1<2Of2#Q3P1opm}h--l8ysK%RigP79cj371H;@vK1lBi`b zmSUwiP+Lsz3N{-`j{RJ=zvi!IU1jPCLhE z*)XtOoE}I+U&=DRaX4ZEVc~(7d=4a|1cBLvC=3os$eBDtwOH%QoPrBMApPG8RJT*x2rKAMtm;9&$MwF1W9;R(Y*GCv csZlssDHQMcdZPlXSmYPnqx%#74^Hb^=3?fkP5=M^ diff --git a/dplyr_cache/html/unnamed-chunk-1_e3ba058d8070d51d61096aadebc5455c.rdx b/dplyr_cache/html/unnamed-chunk-1_e3ba058d8070d51d61096aadebc5455c.rdx deleted file mode 100644 index 184258b476e73f1486a28f428b51a6cc47dfd986..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 158 zcmV;P0Ac?hiwFP!00000231W<3c@fDeN9rN0YUH_?mdAA5QXj})=@YCYU`gZUX0$oz+ M7ctB&F7*Ha0HOXtv;Y7A diff --git a/dplyr_cache/html/unnamed-chunk-29_0f202011f488ca11f660ae78566050e9.RData b/dplyr_cache/html/unnamed-chunk-29_0f202011f488ca11f660ae78566050e9.RData deleted file mode 100644 index 33f0e819a2df6514573dac8365736991677fe4ca..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 299 zcmV+`0o48NgA%;9l>-k;=qfI(S1u^0y8_0;^T@Gn xPHh8!135RjcGtf5lYRk>VitC1#6Yk03h11&xUXwexAo`UegK*1z{0cv006pxkdXiY diff --git a/dplyr_cache/html/unnamed-chunk-29_91b267ecfb4302c8f57e3ca23fefdf2e.RData b/dplyr_cache/html/unnamed-chunk-29_91b267ecfb4302c8f57e3ca23fefdf2e.RData new file mode 100644 index 0000000000000000000000000000000000000000..3b50ac1a7702fcd4e498832dcf138790e432755c GIT binary patch literal 299 zcmV+`0o48u?a{Ru-y_sW!2#Ws#c0rRSDQe zL^UL0SfD7sUe(Yl$-WCe-}~Ox@$mYzW^fGw00uCPIWQJlg2nsW3yuIV=i1DG32yZM z=!t_Gnhno*DgCmml;78NR!M<*+1Fo~#+#VrG+aqu1evnT@!ici5h7^$%Vc}S5G|e??T>3-5e*jZxau~<~008bSj~@U4 literal 0 HcmV?d00001 diff --git a/dplyr_cache/html/unnamed-chunk-29_0f202011f488ca11f660ae78566050e9.rdb b/dplyr_cache/html/unnamed-chunk-29_91b267ecfb4302c8f57e3ca23fefdf2e.rdb similarity index 100% rename from dplyr_cache/html/unnamed-chunk-29_0f202011f488ca11f660ae78566050e9.rdb rename to dplyr_cache/html/unnamed-chunk-29_91b267ecfb4302c8f57e3ca23fefdf2e.rdb diff --git a/dplyr_cache/html/unnamed-chunk-29_0f202011f488ca11f660ae78566050e9.rdx b/dplyr_cache/html/unnamed-chunk-29_91b267ecfb4302c8f57e3ca23fefdf2e.rdx similarity index 100% rename from dplyr_cache/html/unnamed-chunk-29_0f202011f488ca11f660ae78566050e9.rdx rename to dplyr_cache/html/unnamed-chunk-29_91b267ecfb4302c8f57e3ca23fefdf2e.rdx diff --git a/dplyr_cache/html/unnamed-chunk-2_cd865d8d1ac8a3f1ea6152390c61ddc5.RData b/dplyr_cache/html/unnamed-chunk-2_cd865d8d1ac8a3f1ea6152390c61ddc5.RData index ee203b6ed5c313f5776b15a160dbe88b4189f432..5e67b146494193716d2d3ce777adc4e3b478060d 100644 GIT binary patch delta 834 zcmV-I1HJsq2F(VL7=LMh!0VT85=oktpb{t&gKe5N2?RspTj$zt{0 zI~S*HDB1|3h3>%^KS9F-C#b z@^Y&2`9T zsO;EaTSWw7-G9(6VJb6{3o0^D4rH{Kgp7367UGPH5Qts}zG(()ATRYGcsr}P15v*x zc$VmZ%!t(MzFs?h6{KdY0Ynl-#8!t3OtiS44uIs0VsI8wMP{YUCr_U)Pn6SzF=fLL zRF8Qk5CMA}6L2Vabq!PxQj&mUn8<2DGKCoHK!(QDt$*q#iyRY;aQ!|j1?@$5EFFEb zq`ycAYHpLnh3Rn&904)SWC((EuvOUsqa6sgJrymW%?&h`bp+K1nJmD~7q~7L2r9Y2 zHecAJ5?cNAXHwVZjx*iSrMIm*91pKwe)tZq7>d3i_&y|qn&#K2=db@J`B!{XR%>8a zP{`&RnSby4?z$m_7d##Zk4?9+;PHrf)ZE&F$0Onqxc(K7@dcyb<9kInOd_^pk25-x z@|jXdSU)~IVQt4mL9ObQE?RZT)b{l()_U3}hx$5Hh2a&wpIl#yy&4T(pZv5JdMABT)7^8|alX}Yg7QSS>!kaO~@*15LZcy;2;b_N~dud~^0 zLrVmM!51nulH=FA%iUwwy`#O;hJ9*VmQ}LKrA4c>q?^{#$+yo=)3VBoy0c)Ftz}(* zbaBcCqKzPmh!?4td0CRcm|zD*S<-jvZG@Za0d8U+q9$x~eSZSi{h;31sG)TqV-#pD zZzmdGAB15DE?h(y0}+(bR`tmis+aaeslzjsX3D`-rVI`)?eFHf*fN?g?M($ci~tN3 zbbe+~C~g*-F((xq5h-cX+o~v$kqSTzN~t?$x&ovcFtSxSqgX{DfSKap9gR~i6iieL zRJLufsUiZgZhz>OFqIj}1r<404rH{Kgp71m3vtFp2t=;~-#3F*ke7N8e3;hUfvDdT zJWF&yrbOy>U$33K3Q|+n03wMZqSfI76D{ti=Rk5sF*u8;BGXdllP6D?C(7xeJNh=5&=2{;tIx(ccXDM`RFOk}knnL>W%(%V!Wjt4g{KYR~Y3`JiM{1B2sP4jEi^Vg$E{uAGX)hgH# z6tdYy=6}1syJiUCIgjVTW5aFCc|0Q?HMchB@r-x`u7AyAbiwHN=w8tclZb8Gqm0g^ ze5Mo<*8Qg^tnHX6s8y}#qE(knZQsmdt(SdrsINm+7+%u*$@R6^%5d=JLLP8P#3%+?F8zA+o1jfp-c zm^mb9F!J$MqRY%|Y7_GRVfy9qOt0-tQ@sxNT_B4vUtOzlku36@F_z_`^S9%(uKof8 Kc}qXR5&!_NO`A0U diff --git a/dplyr_cache/html/unnamed-chunk-2_cd865d8d1ac8a3f1ea6152390c61ddc5.rdb b/dplyr_cache/html/unnamed-chunk-2_cd865d8d1ac8a3f1ea6152390c61ddc5.rdb index 2bdfa73a971ea1ac53f790d0d68e967e0a8237a8..ad115d6c4fbe17a2edea40b4e9bd557bdc4f1221 100755 GIT binary patch literal 320 zcmV-G0l)qL00XpmoYhfHO9L?w&3@F<1yShl=%%6v@g{zN=%I)OZ)KVtcjIQ$B?)T( zyqdL1SwlUDClABS&YR5JdG9eJgd`+QVv-DONe1(W>&dAt#x`P$b-5clv=Nb%jBFm( zI8$7jpgox8)BMOj8-F#wgEtpvbgofp+LXLm$%3A@?IjqXcPj>h-qTkuCxR~(s5L#w zk7*4{fmd%v0d;&6N07#SRtXL2fGvIE0&RYG(Z@2kEq~U%2_KpJ_h>^CeYn?|-`vr8 z9bW7`d?npyq80N~4H|Iuo@R=-#8ad8QQtOU6V5% SI{MGtjKkx18TbjR^tLgFwXCUKj*%&ehlRwWV8 zKM$lVsY)~saN}Uv^>h5{_Z~AsNJ7#iCdt5-WH5iYo}AiZY$LW{UT1!DOXpR1 zvDfg8bf1Y<%uiKlz}0)2DP9}Tu1zCQ7l^)-76>bkf-%5~3Z+MfHLw!ao^k|2EZXCA zC<7CqLm3VVQ;Ee2Ym_ULtl8eU)6tRO>%z2>|HjkXzkAy8^jMD%>8an&UEPK QKl3sUkKbkACj{N3Mve@h;s5{u diff --git a/dplyr_cache/html/unnamed-chunk-2_cd865d8d1ac8a3f1ea6152390c61ddc5.rdx b/dplyr_cache/html/unnamed-chunk-2_cd865d8d1ac8a3f1ea6152390c61ddc5.rdx index d67aa2c64bb24691fbe98ef4e070f7d4fe170019..be16af2499ec925f709dc42cd8ea2312fa078ece 100644 GIT binary patch delta 22 ecmX@fc#?5~40FEi)rsnX6Ua?21)emSU$;BJ;NVC7i~d*akdf%n!Dq>-oYBeHx^`8#3uRne;X0 z;Rbn%q6m(*R7C-~sPpyg|0`xa#z~SK?FvRPk^5Bj_$P~1QL8z0N>uZ10gr2NDD#%^ z_OygI_t;YFZK=AKp>P6hg%oH33V(Dg{z$_Y-}56^_szl O5Bveh@Z@5F0RR9cnSP=G diff --git a/dplyr_cache/html/unnamed-chunk-30_88fce4081d0023fd191b22812da98908.RData b/dplyr_cache/html/unnamed-chunk-30_88fce4081d0023fd191b22812da98908.RData new file mode 100644 index 0000000000000000000000000000000000000000..445d3146da0707074d36234a0ee827d49e534c75 GIT binary patch literal 267 zcmV+m0rdVKiwFP!000002BnbAYJ)%!$0yMox~I}7SiB^GuI{X*tb(VOJV0q7P>R~! z6-(8GL=O^t_0m;HlY0-t%x^yaGtA5LHY8gD01mj$9Gry>Ve$65VG_WdTbO|hH`YJ- zdSCU2ROPBPLD|+-&^1k78_iVNHQy}csg#8>4_u<=T!e+j2tS38D0Cjlh+9dxy-3dP z;y9)!Uzw_+WqvG^<^NYK2STzeJNXAX2{X0RW*}chYO14I(Viv=t#!ZhPy`rY#L-*d zUu6Wx$1&5dM;$^gH?m#V?z@&=13R|bM#I$mjvv$;=NU&PLhlSAtfbT=DUP&&I$LNbIE$S3GoIagdF5LL*$GsMWdJJC;EVpJG5eeTy$me z(U+z9suBT0tC?7E0Ud)rc#r`A0MOWi!~g&Q diff --git a/dplyr_cache/html/unnamed-chunk-32_75d7cd0c71e983d298e7e15a5651b06d.RData b/dplyr_cache/html/unnamed-chunk-32_75d7cd0c71e983d298e7e15a5651b06d.RData new file mode 100644 index 0000000000000000000000000000000000000000..cd975cd84cbb0c28cf78df85f577f8e8b70815d9 GIT binary patch literal 266 zcmV+l0rmbLiwFP!000002BlCzYr-%XjkX?^(|$teMTMnWOKmOmw6W7pV*_D~HYT5B zEViLdheP_;WwAQueT4Ad3*US1BhL@(5U(*p$U&|%M9#=kG zUugAR=bUi~Gii2e)|MsPfuLNrY|QOn zN)A2;rHEvW%*Ow(7aaZ}Zkk8KXBfytg^8Syl*+Pfnj z(^`Qg`|0%L#aDaLsx`Vb`(v~D8 z#jG1`Bgp7qAEuEy_0_;7=j5JyPLjvFtq->l0AK;zngVO4A(%Zsr6dHvo@z1yHn`CH z#$^Zj(PXrsg0DoklPgu%#f~#Vg{t3(?`K|EvYXP6yz40Pf{%%ed-ORtR9QMuMO zmuJh#eH_Q==u$2v5=ASL`Try4J%o9lAKeBSV?y_g_fXYUhi(a?3!LJmsSREt{D2); zl^K^UUmzn&67<#D=)+328jgbRemeBiLNvS9R4H0rp^0RR9KLW}YM literal 0 HcmV?d00001 diff --git a/dplyr_cache/html/unnamed-chunk-36_104258c1a17d4c84f440af570c45db9d.rdb b/dplyr_cache/html/unnamed-chunk-33_18fd5f391499178d28d1c77cf1f909f0.rdb similarity index 100% rename from dplyr_cache/html/unnamed-chunk-36_104258c1a17d4c84f440af570c45db9d.rdb rename to dplyr_cache/html/unnamed-chunk-33_18fd5f391499178d28d1c77cf1f909f0.rdb diff --git a/dplyr_cache/html/unnamed-chunk-36_104258c1a17d4c84f440af570c45db9d.rdx b/dplyr_cache/html/unnamed-chunk-33_18fd5f391499178d28d1c77cf1f909f0.rdx similarity index 100% rename from dplyr_cache/html/unnamed-chunk-36_104258c1a17d4c84f440af570c45db9d.rdx rename to dplyr_cache/html/unnamed-chunk-33_18fd5f391499178d28d1c77cf1f909f0.rdx diff --git a/dplyr_cache/html/unnamed-chunk-33_797e052f1d95d03d9a77fbeeeb55f944.RData b/dplyr_cache/html/unnamed-chunk-33_797e052f1d95d03d9a77fbeeeb55f944.RData deleted file mode 100644 index 518b193e0e443b9445ad7d290cd46fbd6ea22df1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 255 zcmVyvp8N@O>uJ-EG{l4|6vdPDAPR+2n$7Nn z1-EI)hg3>_b?@Rf3g#}uFz@jm?=dfrYoDzd065?}18{~G!tm|&iQfXa152*Jg=>2s zJXM&_awmne zUe(H?w)1YLTNFiM2ywAm-XmfvaywX%C@uTZ*fV{Qsp4PSvveW0@3QvouWu`HlL2-C F0085hd=3Br diff --git a/dplyr_cache/html/unnamed-chunk-33_797e052f1d95d03d9a77fbeeeb55f944.rdb b/dplyr_cache/html/unnamed-chunk-33_797e052f1d95d03d9a77fbeeeb55f944.rdb deleted file mode 100644 index 3039acdf3b031406f7d90ea9a8f8b2053245df7a..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 113 zcmV-%0FM6v005_WoQvRMU|?WoU}0urU}gm}8CXL@+;lB~V!R*@5HmI~fB_R&A&}3& zz`_KkSr|BhG+Rz;S!zx(kR<>y3M|T+SWu9Y3R9Alm2?+^l35jV*32CfGk`d0%cS>|6BxbZ66cU&v*iqRyqmz+|OHv|Y z#(_sVJaZI$D?4|tJnGQKFi9bqb;1vJ(?-Tc%^&SU1esm>8o9HqlxNu(UlBOB>Byop sN0!JecqzcRZqb!3R~B8_lhWc*RF~%%m{nMq#dRWp!8B5m^%Bq(0Gc2))&Kwi diff --git a/dplyr_cache/html/unnamed-chunk-34_c2d0667f5ab3b61b13791fc7e8308400.RData b/dplyr_cache/html/unnamed-chunk-34_c2d0667f5ab3b61b13791fc7e8308400.RData new file mode 100644 index 0000000000000000000000000000000000000000..812b4022a7ffd234130c5b713ca090c3f87c600d GIT binary patch literal 281 zcmV+!0p|W6iwFP!000002BnZeOT#b#g|oFgn3F#t^fCq0wRX0((9@&{yNSX;q)pR| z6tir!i899g>0(;grsB;&lK0@{eMuhf76Dv90DuK-YY427kzn-nnBf=zduYr6*x=0U zGq>7^ZIe?%Ih$~`5)&;YS+NRJuH`EZra8T?yfBQGH>3>8&@cTUy7iYdVsYTbQ_nLs z=cmfSeUc<-=TasF;-uy2`2UFU9>St1c5Z|EVocW++e1oPmcMf*FSM)`N>k*_9Q0vU zCfZuJ&J{$*ag1brBqO|GlCxU&N7#LWXfE-2! z76wir?W~tlkW*O{pPZPSk*c3jlAEJnnwOWDo0_7VoKc#Wt!r!&pO$E9lx%5~YGR&b zkYsF`VrXn;Vv?Mam}+L4WRjd_0yIVd$;j(gR#pntddaCdISLtx#TmBhlv|-*%f*$D zkWj5xqyRQpH#t8gwU#S0Ej~4;I8{TTLc!Kn!Ou}gK`ALQ4+xcX6e=`9I=HwHuF=ge sEh#81Q9$PC7MG*|S+!ub(T1@=Ly!?z7-#|r1HJYS0Cv^3cv=Af01W?O?f?J) diff --git a/dplyr_cache/html/unnamed-chunk-35_8f84bd215e652fa25e72ceb025034415.RData b/dplyr_cache/html/unnamed-chunk-35_8f84bd215e652fa25e72ceb025034415.RData deleted file mode 100644 index aa950f4f622a250194cf91e75732117dc47a8fb1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 256 zcmV+b0ssCViwFP!000002BnY9YQr!L$Gs*!%%?qq$)zpSY4hPN1a{ik1B?|4V40kfEg z5%M=pQ*!bJC`BZ1S7o3Yn3G-OYd$|Nmc%Q#w&pF# zad8>J_;wCGbgk)HGEQjImR9vc?`QBuJZ_8vk6cM3VSv}Ra_t$0EdS#6^Yb74bFr3r G0RRAxrFxJ6 diff --git a/dplyr_cache/html/unnamed-chunk-35_bf98f13826aa0f4320e322e3d85f05f4.RData b/dplyr_cache/html/unnamed-chunk-35_bf98f13826aa0f4320e322e3d85f05f4.RData new file mode 100644 index 0000000000000000000000000000000000000000..0b0f569bbcb432564d9e37e7ce81751b46438b55 GIT binary patch literal 209 zcmV;?051O@iwFP!000002BnU@3c@fP#Q)kln8`=Trb3gpNh7i7r1$`$;AUf*5U{P{ z#~|WM_`qUxa(BAB;eL0^`G%tn0)PO*pbbICTj;D;3nBr+wht``q3d-<%VTvrZMD+Q z#O_j8@wI7GZAzluwb>IcwmUnPHsz9yluB&ISzZwW%uX z)Y(n@|4;NE2o*(frziXc6MZPn16@pg#1n$`AQO~DSd1u-aGKI2!c2GQQXB$cP8FE|6P&3% zap<9bZ!=O5&Q@IP>XmGoV#g>ZTsE(GeVKW#e-VVlE4&T$N$8ip?-pgSafu($mn*7l z&QF$;+bD|A(IKp^5idF(&;K7W?;*_d{OGhu8)LGktcS9x1iHqEEUeU8>PoC7vhFM! zR%OQOjxCTD#WDJ7CF-z}or0s_yPppIwBRjkIIDyRPD zOVvnJN(lDROII&U?mO(v&hUTyd)U1m89ri!kc4Duilmun(d@9_k~Ko|R16a&qX)5X zXj0{uvmb|X#+9roa-}WHu;2-av$p&q%<>Ix7)%Xq&EaMwR+QSBo;ayxIf)vjk+6BZ zSx#)%b>T{5p68H-b>=Ppf5f80I0%9(J;Pv3;#0yq9EUaczcXGg+w!vk&x84P4nNTF zqI$tF#;9(3b=k}C1dd{^;2D^HkM4Jew~-;B+l*=g8|VRE^%ueT_DFJSo2qT#ejs&| ph^`yhckKfVljQj8-?;kVa_Bpx%004t+j~D;| literal 0 HcmV?d00001 diff --git a/dplyr_cache/html/unnamed-chunk-35_8f84bd215e652fa25e72ceb025034415.rdb b/dplyr_cache/html/unnamed-chunk-36_4e4430a719e5be5bbf712d9f669d0bfb.rdb similarity index 100% rename from dplyr_cache/html/unnamed-chunk-35_8f84bd215e652fa25e72ceb025034415.rdb rename to dplyr_cache/html/unnamed-chunk-36_4e4430a719e5be5bbf712d9f669d0bfb.rdb diff --git a/dplyr_cache/html/unnamed-chunk-35_8f84bd215e652fa25e72ceb025034415.rdx b/dplyr_cache/html/unnamed-chunk-36_4e4430a719e5be5bbf712d9f669d0bfb.rdx similarity index 100% rename from dplyr_cache/html/unnamed-chunk-35_8f84bd215e652fa25e72ceb025034415.rdx rename to dplyr_cache/html/unnamed-chunk-36_4e4430a719e5be5bbf712d9f669d0bfb.rdx diff --git a/dplyr_cache/html/unnamed-chunk-37_3aeb8a2149a450beeeacf2a941532d4b.RData b/dplyr_cache/html/unnamed-chunk-37_3aeb8a2149a450beeeacf2a941532d4b.RData deleted file mode 100644 index 012391e9fedd371772a17893c590d03874938eb9..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 280 zcmV+z0q6c7iwFP!000002BnbCOT#c6#j~|Ln3I1(=w%9~vpeVw`2!&aFsaO!=mO7IRiZ`Yu3SG^*4jj)}8y$lk0V z>$0hxD@=~#7)km_!bAm1K&k&uE&J3G1A}&=xw9PcSCDk7}fUKC-3>BhJ^2We^#G_X%a*bW2`7{XAP`B6S=P3u z#$}g4H^dNpbmQzEz=JoNG~ayb%x`8oe^?2+qJ)qJX*TMl(ZZ0lmWvsS2x->Q)JT(D zp-#Eprk}f5CCZwfb(^$TWLdH?nkidkA54VtP|9SWwHDe}DjE!fK)%Yr5B)b^`&y0= zbA3V97US_4j$D~E1)J>cr2YRE?GvTz_4>$nP=T4swK>rnc(RFuEO+2?&^d6=H zK3J1=7W3sJd_l*V%@!C0q2PVlgC=S%_kO&1#AL)+<;7sv8;+Mq^j z2KG{wgKJ&u$`lOkwcfK>ZNeBuDh%!lDM#BRRc5H8ogRr)g_tOGn9dLKnPnNhb2Md1 ztv=gH_y39RgOEJW@BBo+V1|dnJjlgVM>=K{dx_*CpmNCLfJPAy11gm4e>%k7aj#x) LlxiDf6#)PMPXc1S diff --git a/dplyr_cache/html/unnamed-chunk-38_9d6c65603d6280fcee7310e3a57a3e2b.RData b/dplyr_cache/html/unnamed-chunk-38_9d6c65603d6280fcee7310e3a57a3e2b.RData new file mode 100644 index 0000000000000000000000000000000000000000..5b1c6c61ac03988280cadfd6c61e9f68b575e067 GIT binary patch literal 536 zcmV+z0_Xi7iwFP!000002BlO@Z`wc*bpttcPrdX$LW%-XZ2S?-he9QXHf=A76rf5@ zuw4(e6@Q?$-2_GSr&pZ?1f(UtbR>Isz4P9_c{}p$$2*7JF-_AdTD5YdRgP(@9gjy> zdPmc$N3?jORkgP?4h(-DE#yRS5nwaO?wB)y z*mf)v9o}kl2kq}f^KM63ec$W#;MouuMG){T=%4=o5vNPWrqk)OAz?+Vi`2&@^LcK; zg$^{r$%hkQ0CAD?9P5L$NOHM=J_w%S>#yH3|?Kbl)U0H@RGo*S+Uf8B-xSj^eyyDY>5-66HwtNPZl(Fa%F z4Nyi%j;!i;*!hl6H6ZzzArZXJXPH*Fq~6wHzLI(^+j1?VYag!H-ST~wJWS3Y4xdW( aL91P+PxTD7mwM<2@%s-b=yw;G1ONccLkFY) literal 0 HcmV?d00001 diff --git a/dplyr_cache/html/unnamed-chunk-41_6e4c3ee0b265a5108b80b977ed8b6ffd.rdb b/dplyr_cache/html/unnamed-chunk-38_9d6c65603d6280fcee7310e3a57a3e2b.rdb similarity index 100% rename from dplyr_cache/html/unnamed-chunk-41_6e4c3ee0b265a5108b80b977ed8b6ffd.rdb rename to dplyr_cache/html/unnamed-chunk-38_9d6c65603d6280fcee7310e3a57a3e2b.rdb diff --git a/dplyr_cache/html/unnamed-chunk-41_6e4c3ee0b265a5108b80b977ed8b6ffd.rdx b/dplyr_cache/html/unnamed-chunk-38_9d6c65603d6280fcee7310e3a57a3e2b.rdx similarity index 100% rename from dplyr_cache/html/unnamed-chunk-41_6e4c3ee0b265a5108b80b977ed8b6ffd.rdx rename to dplyr_cache/html/unnamed-chunk-38_9d6c65603d6280fcee7310e3a57a3e2b.rdx diff --git a/dplyr_cache/html/unnamed-chunk-39_231631f9e42d0389f6ee62b2e3c7b3c6.RData b/dplyr_cache/html/unnamed-chunk-39_231631f9e42d0389f6ee62b2e3c7b3c6.RData deleted file mode 100644 index 272c9005a505246b3f3e06fcfd7764ad2d5b1cfe..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 290 zcmV+-0p0!|iwFP!000002BnZ)Yr-%ThNG<)%hi6u!5ej3qRr8Mfmd$+08tRe(3(a% z*4AQMhDi6*$I@O@?-w{Wmz*(X~|_`U`*m0AxSOthxaJ05W8X(f|Me diff --git a/dplyr_cache/html/unnamed-chunk-39_413916200d38f207d13cdeadb1fd8d5c.RData b/dplyr_cache/html/unnamed-chunk-39_413916200d38f207d13cdeadb1fd8d5c.RData new file mode 100644 index 0000000000000000000000000000000000000000..8d16b5c853842e0ad52a97ac1b45576257f41fdd GIT binary patch literal 254 zcmVt#V;DClW?l6Hg386M5 zse;J5X={57@{P@r^g4D5)uy3oRN^6 zV_rmN=RfzkR@&K_t2chuRF&FT!?bIvcP3%XxflxX{Kb^U6z;nk$W% zixcEmmSu2^wDlgGI=I`>|5uD!N{ga6MtkVNOmB^C>4)-g!$6OjlyVBm6d1=qGoh8r z-^wv`Ex#q0bO=iS&STrA-ZeFx8g{4+s08u84Vbe5_ zvD%8J$PoAFW3d;yi`^{{zVnfDekbS5pH>X7Fha;eJ*$hXz6nu(xtNg{pj~+y!Ad;-J z8&*uy(k6nGJhgXmcQ5wtz|Z`{4ByN=F4r@*W&jXC81x|MTMPZ?rxh0fVb2z45W>05 z_p#blU;CUS89g@5rW&_(EjL=&VIb0` zX-dVcE&b5R=wBC;R_N{}g!deBI1g{0?zS%8VuX-}bZv^XnUrYu@_bKxg!HL26QrXP zIdAQx6yH_ID9iXFYj$GM<~iN*gs`m5KZxgqPRcz$=G2Rq%X8Pca2Z>zS6;eiev-J% zlQpMf<>V#^0yx-=3jrCev&;Ga5%Uh?D2fht1${ALMZ!D0hYbN*+bLyDQJKI@gO;V> z#u*r2ROD@=R7`Vulqxx`)Eq*Vg>xFdr{*5Uyrno8k2{c}ZOXQRV?*jDk*e#nug)9v tg#eq!>ni{lfS_p74R82?e{xX=fA%;skozu)RagGz&o4hN4B^EA0076rk2(MV literal 0 HcmV?d00001 diff --git a/dplyr_cache/html/unnamed-chunk-41_1fe48bea4b2203163cc5754f7c8dd3c4.rdb b/dplyr_cache/html/unnamed-chunk-41_1fe48bea4b2203163cc5754f7c8dd3c4.rdb new file mode 100644 index 0000000000000000000000000000000000000000..0d249e4a7b8d627a37ad19a8e0328feea72f721f GIT binary patch literal 119 zcmV--0Eqtp006akoQvRMU|?WoU}0urU}gm}8CXL@+;lB~V!R*@5HkWX3lKAb6@vLJ zOkkRYffGox<)oIS<`e^20$`O8QP#wQf}B*ClBC2uAcXQ*3Q`k`U^3;2IeDceXhyOo Z=Oh-xOoZE$mY7_UUj$_R0{}Q+6L_4vFCG8@ literal 0 HcmV?d00001 diff --git a/dplyr_cache/html/unnamed-chunk-41_1fe48bea4b2203163cc5754f7c8dd3c4.rdx b/dplyr_cache/html/unnamed-chunk-41_1fe48bea4b2203163cc5754f7c8dd3c4.rdx new file mode 100644 index 0000000000000000000000000000000000000000..9c7b3e46cc9efc25ceba2d9f03ea5329b1c3529d GIT binary patch literal 141 zcmb2|=3oE=w(bW>2?+^l35jV*32CfGk`d0%cS>|6BxbZ66cU&v*iqRyqmz;8l%zz& zj02B!c;+bhR(9@OdDNkeVUj{J>x3Wdrj3k?nm^iy2r|3$HF9TJDbKPoz9MjL(~(7I tjx3Q`@KS(r-J&a7t}ME;C#A)ss4mYjFsraIi|a%H!`eSry)FS=0RZjRH?jZ# literal 0 HcmV?d00001 diff --git a/dplyr_cache/html/unnamed-chunk-41_6e4c3ee0b265a5108b80b977ed8b6ffd.RData b/dplyr_cache/html/unnamed-chunk-41_6e4c3ee0b265a5108b80b977ed8b6ffd.RData deleted file mode 100644 index 927425ac1a2da301690c7e3c8cbd7efec82494fe..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 537 zcmV+!0_Oc6iwFP!000002BlQbZ`v>v&I&!ur(Je`LaGW<6XFCysK%s}t=lfGRA6dP zU>s+OnjgqXwxNps>C>J80o`aWds1RMe&6TseSXT_hkKjc6HU`e_1@hlan1mvYJ(4@EmHlDJ)_DNBT}^RP@G^$wjnqQh+=%(>-sS(lpb z+%@O@UQhV$+zA37Y2NH9>u)bFFX74HB90+sc{n)#|0B*Wro zg?BpO2xsrlfB+K=CcO;!l`%DxIkn@93m%a zR0tnN>X;m|0K7!Vh;O(iBd^gqAR8|i;+cj~R!T0m5@KG)Op&4fHJ(=KIDp;;LBt~# z?|@bnaC|rUh>v1tb*AZz|hbxS=d1WPe?HRu+r0fWw8J7e3Bb>)gE)J7;9J*e$-K zK_(McL|FLq2;FdaH`~1{CS$P#PYQ;uBfpDWxzqg2T40&f!k1%W z7^aEI&rDEgi&)3`Ht`UNSdo2e@Av?0*X?%<$AQ0YLjfqU5BaW2{)l&ot@fh6O>FhS zwRa1c5uqdN`fbwL^Qi_zA9H~OFY{58_ABb`9_Op5ms-@JM&CMKue0O(Bw3VRKob3| b)Cb*Ol|I!o*k0WauqTyR~F%XP5vArN};z|S)7`l$%sl*U|+ z$jLekLvpfZS`;Ktj`{WC{}qc4<2a5__JIswDt9XFa7(TzDOI~PfeD8R4xYIprdDSS zf&qho!(hgkg{vfb&z9}#2XM|=R$qnj_zb#h>U~p_zlI)brByd%U*MIPJ(hBy!ZCl1 gL%A@?!wnh7_X!NK;jXUfr~bgtFZ?T1dbj}q0A4YM-2eap literal 0 HcmV?d00001 diff --git a/dplyr_cache/html/unnamed-chunk-42_6a414460c5987192871617ff047e29bd.rdb b/dplyr_cache/html/unnamed-chunk-42_6a414460c5987192871617ff047e29bd.rdb new file mode 100644 index 0000000000000000000000000000000000000000..f89e034161703022e017ca3648a94b675e708303 GIT binary patch literal 89 zcmV-f0H*%{003-woQvRMU|?WoU}0urU}gm}8CXL@+;lB~Vthaji^GN710Yd{3*`+U v`oIlO1_*x_0|c-z0SQJ176wj`=H#5j;$k2}07;O=C9xzGNdE%>_H_=Sh=(8) literal 0 HcmV?d00001 diff --git a/dplyr_cache/html/unnamed-chunk-42_6a414460c5987192871617ff047e29bd.rdx b/dplyr_cache/html/unnamed-chunk-42_6a414460c5987192871617ff047e29bd.rdx new file mode 100644 index 0000000000000000000000000000000000000000..02ef21818fd98887353b6054dcec40d5349db9e9 GIT binary patch literal 141 zcmb2|=3oE=w(bW>2?+^l35jV*32CfGk`d0%cS>|6BxbZ66cU&v*iqRyqmz+INm3$W z#(_sVJaZI$D?4|tJnGQKFi9a8o9HqlxNu(UlBOB>Byop tN0!JecqzcRZqb!3R~B8_lhWc*RF~%%m{nMq#dRWpfi3vfflEMF006QhHdO!s literal 0 HcmV?d00001 diff --git a/dplyr_cache/html/unnamed-chunk-42_7261d725df4c17cb509f77a364f3aaf5.RData b/dplyr_cache/html/unnamed-chunk-42_7261d725df4c17cb509f77a364f3aaf5.RData deleted file mode 100644 index 0c965b3a2c5b4aa5f499a42f6dfe2eef2e0afe6e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 254 zcmVXZ-xF;WBZf&8Pn!js;9z^M}2T>@9BuZRUc(8X5!+hT`^P8E6`*q0H3;-N(oe?-=k}!UHT=FXbcSPn4TsWtE z=jmPbxzCkUwp`d|Q!U!MmYY&@W!w6lM?o%v#MdH-wTYB3)N6d18X;tuL?)Ed#Duvx zL4IXfhDT48RfSd_?9Jr=D<&OdMNu5RJq}>5wz}-thph0Lqnh$GP3M@*k^2;6W~`R^ zo0($Y@>{}Lk6`TYJicw4UEAQP;fF?(>W1ED{{>gKhzW5?3^f|>gC70<0a1~qP-p=F E0FIA)CIA2c diff --git a/dplyr_cache/html/unnamed-chunk-43_66984b16591f46b405e9424816614f55.RData b/dplyr_cache/html/unnamed-chunk-43_66984b16591f46b405e9424816614f55.RData deleted file mode 100644 index 95e7033cc7842788f6732c3359bb2d64a5dae6fa..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 259 zcmV+e0sQ_SiwFP!000002BnX|O2a@9hSw%NxF;WB$fYf~scSb&67*1%9(xdlf=II2 zY*=xdmNpTj2b5b8;lSNP#BC*Ft!$rU!GSaMJOEE;sS-} z(&mS_-kYyOA%)axuDh+7_iZb-swPtR?FV6tg7Yk873E1r8^$Yklc??f(2M1U$!G_0sI{3atIoY>=egWmB JF+6qw002UycBTLT diff --git a/dplyr_cache/html/unnamed-chunk-43_e2e72107e42c3009109e09c33c29cd9b.RData b/dplyr_cache/html/unnamed-chunk-43_e2e72107e42c3009109e09c33c29cd9b.RData new file mode 100644 index 0000000000000000000000000000000000000000..40adfa9e4edaf81402da3b37397d1dc78463c402 GIT binary patch literal 237 zcmVXZ-xF;WBD3n@o(@j#S8?2X#58xl@Em>zr zR@|f#vj-`CFkepGiU;q`<(m&?e&2U@vn|C|06+q1GJ<3rR~SD&+{#OUbQH}Aq;MK_ zli4@_(br_i@xl$QUxcnREn7)0bgyz*)?Dza$kmFM1(izaTxnLC%909ARzF3|*&pO* zRaLmph`mQ=-raik|A^T^h^A@wS&u(pNju92Va<@^mBgqxy`G}LIBgirz~}e7&=cbt nJ5#?r|JncPiqm<86k=$FG z+pFck$+8SCArn$UN$c`){Qrn?i*ZpDmrz4*OxS^o7Rzd*sXqI)(Usci0H3IY2LjCZ z=*F9X*VPJo2;c=+(Y)IFVE1z=)XtQ?RRl1B2!bvE2?+^l35jV*32CfGk`d0%cS>|6BxbZ66cU&v*iqRyqmz+ojf6zR zj02B!c;+bhR(9@OdDNkeVUj{|WD?(mU+kvMjEmYo+J{IoyYw}3XW1#wvN66QacA<+P6w%E0ZATANa9VF#IboUlJ2h}f8< zYgya4HaUp+)yL8@a17>UfspqH4^Q5Zr}>J&6$AiSz_$9p8kh(MuP+N60buvd&;vHO zGUtQK_r;;!GRiVB%2Zj5bXCz(aLh7Yz2hL*rv79aQV|fw*)H@5jYufS)SGZG;=WIf z=K8Gc={Szj(Pg42P)3{Ve)#_@h9?Mcp5yE>2Ka`G*#_oT~B7v(z;ccP$3t zxdN72?X^Nb2iz!b(y3$D;|+3_X_~W~7RacmgZ^G{?QhWI>;mx%C&s>*Es_JK&tS?vGiU;q`<)0sBzW;xE*xrb(0Du6(U;x3;uQ1%aJjx|NIPm5ILb&w0 zj`+iVb)_O@^xX7~ox8TBMzd7LweK>`%4L=$$?I*LFKWekoW(ioH01?p;xysfV@7|F z$D$~3A1Q4u8u~P=>Hj092O+Ae+D9G!fTh~8J_x2h#yg2#adJOFfqoj-Q?IX{cdk-9IweLXZ;1A-)M}p*%>W-YhV8K4c=807d!y~05tY=9{>OV diff --git a/dplyr_cache/html/unnamed-chunk-45_aba2095b8bbf3a5f5fb04fd4d70ea5de.RData b/dplyr_cache/html/unnamed-chunk-45_aba2095b8bbf3a5f5fb04fd4d70ea5de.RData new file mode 100644 index 0000000000000000000000000000000000000000..b8bd88e9e218a2a9f3e4d8a0ea7a5838afdf85ee GIT binary patch literal 337 zcmV-X0j~ZZiwFP!000002BncrOT$1AhPPh__vB9)0;LI<^dpJ3#dxVmJqe;x5ossc zjR|f(NHzy4{WtzjaTBcd;6+?mcHW)gd3R=SFIP5QQ9?+EbUSU*>8X(P?(eS5DIwjq z5-rjtN9tTyEEjLZI=~>}!$>A#Sfwc@oS8vXrLU&ruF=QIXy*D;-w$ncLpStCPRJZ~ zHsa_qt}w?3Wb1uCpTpJ)xDXIw8F_>MTMTxTZZ?~(RX_tagN*SV%}|zbZURFI{fjea_~IRZd8eOq7q;0It{ZTK^bRhlYfl4V4yEwhD$UwV~;7TB*7vsxn2X- zN`hBk>JKO?ZWxVq{Uk~c?V4F7^Gd=`VV07qXxG#N>}hliFd3iDY};uv3i4}*fxxoV jYcu1|ZcpQ9(9~$q3JW!E?b}Fg^NM7 literal 0 HcmV?d00001 diff --git a/dplyr_cache/html/unnamed-chunk-47_903914cfe19387a66b91afc035d4c5fe.rdb b/dplyr_cache/html/unnamed-chunk-45_aba2095b8bbf3a5f5fb04fd4d70ea5de.rdb similarity index 100% rename from dplyr_cache/html/unnamed-chunk-47_903914cfe19387a66b91afc035d4c5fe.rdb rename to dplyr_cache/html/unnamed-chunk-45_aba2095b8bbf3a5f5fb04fd4d70ea5de.rdb diff --git a/dplyr_cache/html/unnamed-chunk-47_903914cfe19387a66b91afc035d4c5fe.rdx b/dplyr_cache/html/unnamed-chunk-45_aba2095b8bbf3a5f5fb04fd4d70ea5de.rdx similarity index 100% rename from dplyr_cache/html/unnamed-chunk-47_903914cfe19387a66b91afc035d4c5fe.rdx rename to dplyr_cache/html/unnamed-chunk-45_aba2095b8bbf3a5f5fb04fd4d70ea5de.rdx diff --git a/dplyr_cache/html/unnamed-chunk-46_38ae921b81ec14e10ba468a5f2394c20.RData b/dplyr_cache/html/unnamed-chunk-46_38ae921b81ec14e10ba468a5f2394c20.RData deleted file mode 100644 index b007a89a207b80282d9d7e90f6f023f2ecce8434..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 300 zcmV+{0n`2;iwFP!000002BneBYlAQxhSO>f%V~c?kU_VDwtlQwVTZEO;|lwLLMb&S zKc`Ghr^%rd|MjsbgO0&^Ss>*7!NZd`S2IP zbfM3ChwqC+y(7Sh|)^XCEc zrdo4(QVvuUMdau(C<>C%Cc7K||B7*oaU91-rzXAFW`aYDRh54zxaL&4SIO^z~>hugYJX)0RR9H*^~qT diff --git a/dplyr_cache/html/unnamed-chunk-46_38ae921b81ec14e10ba468a5f2394c20.rdb b/dplyr_cache/html/unnamed-chunk-46_38ae921b81ec14e10ba468a5f2394c20.rdb deleted file mode 100644 index e69de29b..00000000 diff --git a/dplyr_cache/html/unnamed-chunk-46_38ae921b81ec14e10ba468a5f2394c20.rdx b/dplyr_cache/html/unnamed-chunk-46_38ae921b81ec14e10ba468a5f2394c20.rdx deleted file mode 100644 index 77f93c8d026153b87ec2888f7be6dbe60a7058b9..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 125 zcmb2|=3oE=w(bW>2?+^l35jV*32CfGk`d0%cS>|6BxbZ66cUi)h?vp9qRh4e8Sk7_lb_T&M6P-PiSIkUr9Wv{j~Taz(yJ%>=2kRXUiG$l@O<}t@* z-qa0vq-9PHlCAgod=A?|$c2EIRN(Y5GhT-BuGBm2J59F^(07@dTN&4 zi3x5#NOlXQ^skF)Q1I?t-Wgta=AC(Y*amb<2_XhCjS(@%eM`o#n@4v}h&k$q3u2PX zURR!IuNdiZYqm+=dE?-XnzhZi#G)>c^*TMjHc`finuVIrH9n@MiT6Msn)KV2LN-VKb zut%=ymL3X}0`6Q8Ou^)S0u&%Cq{7x-wRHo_C0Nf)b=FO9{M1vG)osaCQCEZiJ}~U{ ihrecy<@{nAEv5a&q(TYiwFP!000002Bnc*OT#b}hO@5=bLCGs6vkRG-DZ zsV$}-H0gzm{TqL$m=@=}@J0-ToHyt2yg4T~7b_R9FhZzp;Yk%bWj>jVI`0i{zHH#Trc@<)*5n@&E=I@&e00DBsC08X8W@48--(U4y|WP(a* k)@Ih9-5#AMF!X4s9hG|A#lnVhdsp4?(e~ZB$g`IJbcj3H^&c zV1OtQl9%S9%nJxZFm5!(IMao%bDc$bnG%`gSyO*ZxL{x|Uq(w}8P>N zoUB)?6*^;Wy+=;9?qPAg#bSW4EXy-)&?ubfgRuj2R++og-gp4%**hXk<_rsoNG3%9DIzjUC8ivalu3fAKtxc^a841SY0fbx<8?6lH<9+L dZLf(mulve2dp-ZP2^GHk^$m4R`?S>o002CSgEjyF literal 0 HcmV?d00001 diff --git a/dplyr_cache/html/unnamed-chunk-40_4622a437ccb16e69a968089c5b9b434c.rdb b/dplyr_cache/html/unnamed-chunk-48_aee6e46984a1b347428576a3ca4bef76.rdb similarity index 100% rename from dplyr_cache/html/unnamed-chunk-40_4622a437ccb16e69a968089c5b9b434c.rdb rename to dplyr_cache/html/unnamed-chunk-48_aee6e46984a1b347428576a3ca4bef76.rdb diff --git a/dplyr_cache/html/unnamed-chunk-40_4622a437ccb16e69a968089c5b9b434c.rdx b/dplyr_cache/html/unnamed-chunk-48_aee6e46984a1b347428576a3ca4bef76.rdx similarity index 100% rename from dplyr_cache/html/unnamed-chunk-40_4622a437ccb16e69a968089c5b9b434c.rdx rename to dplyr_cache/html/unnamed-chunk-48_aee6e46984a1b347428576a3ca4bef76.rdx diff --git a/dplyr_cache/html/unnamed-chunk-49_c9fc63cbeb534e1f4921e18f8781c9df.RData b/dplyr_cache/html/unnamed-chunk-49_c9fc63cbeb534e1f4921e18f8781c9df.RData deleted file mode 100644 index 3a7eb54bbb7c15c50368db6970fac0102f668707..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 377 zcmV-<0fzn`iwFP!000002BlG5OT#b}&D{22p8N@y%Ge6FTfdj#e3{665@gCmWXsaj z7SndLsW8U=tG`5y^Bx1h9R($0-F1I3=*cP{j(J&ZV zjD(S*IoVS--bSMlY)!_6fS8u?xO=!ncZczEx!jrs)WinML%zeOFpHBC@=C5NSptQ$ z5;8Hk;3>}}ymBV<0&fy7LO3@dq!Kz89l!ulA|x+*lOkWkcnsPNm8Ev38sFzSi}E6+ zGRd>L|4?)ErqBH;)iwQxW?c!s@lVXqd`Kh0vi55oAe2!9Ksl%YbqdiK$J z0^22?YX$^tiv$V`z$Vs!n2rzjKqX>20oZ}#yQb%W?F>BM^zHh$68bkECTLk6VoA%Y Xlotuper42EyMF%wTku{s8NDhye!^g|vYvsV&_;|VaTDka1x%eZH7almm%K;z} zNP(A&$IBfZ(;mO#@%STrd^|qB79T%}2Z?JZ@wG?sazMP?Q9K?1NkNKu{Lx>M+W6YZ zc(8VIGJf)?77x_o^7u7bI|;szYL6yskB;8HeLER1HyMwgj0eBt zCu`#;|D`xO=5b65zK+0ulSfA&N01lT^5`%1aoOKe@H<#pe2NX6C4kOD&GZfc@I)N{ zhdf^RVGjVjfV#>RL;tj|=|Q&Kb4F=lWwrsmRyY9QNURkX!9IBz zP~hhWRwVdoM-Ns2Xc`#!Nu~mqkEj(20ZH>HU;*z9EATU3`2Txy6C~~lZMKL571kEo zF^)q^DN^AoFL4iw-0aBYIIGqMOQ={erd-9GZcV%*)iZBHfTdJ~+PUy@a3O)SIUHvl zk14-6TN|+7wJG!H@`1%yxVyv3-?lji%qd zHRZd~DhA|gA@5h?%`qN+j&%-aYG1UCA!$3&wYa{hGc#7ZtItS2nXr ztWgyAJu~{%Gf>XLIZvv>Zrm*t1q@|>Sy5$c{ZNVA=m|QSxm6)&OGBx>80!Q$>(Wiw zUwcsYRXrd|k*w8u@9qjx^FIFfkW`Lso0_{hU33S8T4~Eyi(_q;bZeUU*Y}pxY&QdN`bUH`b&XL|Go~r6 zZ#{Q?@SZ;$fu+{oDZkBoe^%Dle_!1S{nfThKbqmGUS?m*p6#S%TWxZ%@P73JyTD3} zy`D+X+lLp(;}lB=c8+^6J%p4=oQw=J&tRoBK-ZCO*0s)b8fIn0(1uO0zcv&r^3K+Q z{q%2V!XQw@+}35?=Gqb)?NidFqwZ#W+g_k5s~E0r%lV?U^1}7GWL0$6m*-9h7|sV@ z!GEXi?ZsF}fa_L1zn>SZe^2@SXRLlzOA@{MhrfMp%ufDvNo9=t0pvux zO%l_0c3!cbNQ3N~yiTIO6TWZ}>v}~+ZW-B+e4+q&C2=K%ip@;FW@aRXUFm3YK4d-0 zsxiGGF611(B;%?LS3cn!%rtLaJc{z57Ijv-6J7hwz zX=3L0is&yJ50%s~h&L%~8bF%nEhwy^h~Fy|pwJU1O^4>b%=rx+6(|k)o!W`EQVAB| zQEo8twWqGXlig`$XZmte%ffxP^tzL&pt7=&&d4?rC--P532*$tqE?H=B`u;|Sa_U*Rz7?Y6kO*;CRM3K-Z_JO@E|K4{V3`rQ|%bzY1>y5}u@$ zEp4@?+YkK_1=%JpqlhFb0~DZ25|-;g0R$@`OI@%h=2G3(7DB?t^mHZ#IN!P|{9aA^ zv5~qCnl9W9AUI}drEt)+zlQnJEEimRU=sI`0@x9XgD}WiC9HD1eOl)a0fGu^la!C^@ zVpbs8a$JtZNOn*=mg1>kvt}E~{0aCrG3_fG$6RkrSpmNG6o8-ODLDAR^8`FM=NhNU z!wASY+h>WXQ;AwsV{xo7iqI1*i#nBXAV%-RC2bOM}UovtE-XPy+&OV zO$WmRgn|s!ltRZRivk6vW4J|{6o8OJ)}})N5(bjQGOF&;3FJv*%tD5%eR|~ zke=24z;9`%o^*=@YeD0`b)P@g20XIa@zZTz*sNTs=(oiniH}WmtmpiglXMw{5<5Oa zSHrAA5R@GT&#Uc9Z{p-XJlGy2U*mrO>7G_-ygAKiw4?K|A068W%e2^~Hp2(PJUm~% z-kx6LNzW=C8Zk`5Rj9oCUC6{Sa@~QQF>1~6BcPGzo^g1{rl@Y2Jxu*zYz8fs9VlfX zvfuizfdI7$&S-~MtbAZK64VlXvdp|`0nYDrP_h~EZ?i%^Z`Wz17I^-S-2UzPW!n51 zWVuKy-sJqi0n$M(A&Pe(_8qXhtXnk?x3X1HZD4#y0oLz3tJm4_vt-qUqkwzMx)@2Z zLF{V=Xum+}A@&Zqr9AMNuuRKR(zP7%`x6|*ypIne1z0{syLG4u zQo(sotqyfxavavlHh-S`Z96}I?))J7cHkxZT<97G5I53LMbqtHJOTY4v5y@ZIuD-G z7qL2mi9an5EFTz-F02-56HTr*TLW?YF2H-=kGW$Rc#;I4c%|?57hlPfRy$lyg30B9 zAARkLisqC^dM?+<8;YdURzO962EJB;?boSkTe|l~#ylGp4{V$}gJ&ulc!#3F@jB{a zkhuO=okeqs#(dQo-kK_C<_l9SQoz@b&bpXuVuPA4y4%Box2O_iABIC@&J9O_jV|b7 zA~ewtryeYsP+408p?+`{g8(6FXk>)?wpLQD;Rrp}mnFki{Xy)_vot3Q4qVi{^$z&bmJrF=1sIBEt}=1JW&zX2Y6Pxk*SiaA`El?%pT}|s_7{tV zt-8uKKNp+i2#ukDFM>(m@9fiRNPp@I`|}bWTY~28Se(7mXGxOUune1qFU07{-A3Bs zDcWY>{MC`Ts!9$xubb$T0)3Gj`vV2-l{}@c_sG`}M`Ozx$Sd`wiWmJHn*5GWTff#I zaV6<@X$_}nI&Q11VS%aD8_(uMT?W@LvDjesa`&kU6Rome&1iPzwb626hSCl~? zPW12N*XNfuX91pve&BuMtG=4lcV$NkW}Tf+v)V7!1-jUwSGzjypm>z@l?`&?DexI@GbA`4~)=RS~MP{ikE*&wRjQKUi-&r+9 z?B?a3nC5MjgzMbP#+>9OpSXg^Qf8dcftBUKqD%7ao?X6z)ZZlIg98IiH{^dZPP87K%k?06&V^(t93r*qS&nik8bDYI}(tuLME?XA^=qrE3b}n>pi0akd)N3r=6>`o_}JjV`qX>(3!Ov z-KcB=X%7uVArmAq2*ELOE2SD=2}8Z%_v)@zxdZJFge^bnVJW%rt7wIMI!my$hE6}_UcCvaSm%EW#8T-!PaQQ$pa9v*#%nf` z-Mjm|vngSmsX5l&$w^ga_AkCjRBBa0)JC;!olk{tnoz@LX(?P$7^#AT7;5RT^V*%w z#fjRocI8QuBK%PR-}v3nOmN)isQzU9;AP>nkH=@fSZzP@+aTMD!Zd==Jr#K7NMCGYMjs(rI}{2cePHiKH`KYoC-S$^GN#8Y%T5kM`E~(j!-v=urFwHjn(= z1A@R+V@}3s&#Y8-d`Vh6Feq{VwG$#I&vW|mpJzg^qAgi#wWeHtEBU-MZfswa`sGbHDmKe40 zCttg%SlWTr@*0a6rC@1H@(W?T7o^)y)9IJ?KlC|m^Xm6swhgTImG!jK;#vqGe#3{l5?{l=tJEy1lx+4``N$;1xTQU|VnKyM zhamItELyn|bMleVU4FRLrQx5>rN3J<)+S|jBbZt5irqN@V>(B2n=sT6JfnrZz@bu$ zIT@9%tbwGs?0@MssOk%}?5$@Tdy`a@m{o2c=#;P;cSD9WouP$||6=k^e}y+8-Biyd zNGC$frETq%`?>m5q2U@q-Jb>WI-gBK$}Yaoc6zEMNAfT{h#+WxgJrI`6lj9B!>~-o zyZ^Hy+MZE{725A3HJnTSnW5z@x==}YswMT*-#j;gZuaW{9h~^M7P~pd@8ipLwF0|i zm*DxpmO#=jwEH$L)e7MtW)EeF^)wJ(R8Q);1N*D_TUr|JMj~YS(P!uUwB7@T=?ty} z7&MZj?UvQU1iFY*j3tI>hxKydryRt_f)qDMbuPJGP?+5`74K!;Kx2G??8wjf#7AQ> zPP2*76e;sZ@EJ+WX2}-qQJ{ZOHPb)V z6i8R9TS=Z-L+$j72;6C3c|8#Vy8N`AgIYd`PapHMYWnF4p1vkS>N7q8b!-&y=IVwhRQWWGOz1kFCoc{SXZdiLzh;vJ6l2?HA5n zXy#9L9Py9>SpjdwOAN-(***p>BBM)UZW>{Kaid|gXIk!fqay=Ig$l7}vX9CC_@)pz zh;etW)^&SU?0hxtV5HrqE%<6HdsFqgzpFL|GEsnx5xo(>si-nWvOgvBD-Z<)d~o7E zeYWnfPFr-T^Hq3KRCy_ZfdV@FfUNgG-Tk-86N?Z|Ca%Y1JuMH4A?{8tdTyY3F*g3#~ZqUhf+9Hke_hhc&3jy%yW zej>yL*6(3lprQ5n(e>gZ*`_^sjkf66YZ;6h^!xMchX`V#y$y_)xz(2Lb)^>72H%T8 zG{EEVu;l%*e7Zdz8v0>|sfk)JJMFNw%_E$nPkh4)I@bzO78?D}>`(dkZO_AT&4jEq z4+DlCP&5~s-g?JeTQ6(Wex&;35!+SCqi5JY^h2Qm&13$+5y8$5a1Sy6WU2G~lV3o_ zlXoq*$a3b#0kXd7;{e%<3v=?(@fVbD4#Cf-9-U}26}&^)FPGBtO$rUd(BQblkjD0(dzr4^WnFgog=>U}}%Mi~n&aNkrI`3Y%O(RzE zE;6g9Zpt!EC@V#mo9HXTO*XsDFl%13z5WI!o$6W4uWE2t}D}TIgpgAd5K?I{7}T# zu$WkDKu{v@-gN)_jgmaQBAOCB06j7MP2pG}=JfznD(4VZfz{>?P9eW@W|`xuXlI|@ z+cv&Ln(s}sX=r*Rl4^J4B$Z||{4LAwh=f=r<*DvTkoQ8B46-GRF zMiH0uReM?{^sZ8`T#k#X*GeRUn8zgf&5zN( z?+HLbBZJ(ktGlh_POz$6Pd>A)wEOw}&-$R3_p5Uz&{wH$a?QW>N+B(|o zXy8ep|0RuQc5%5UeMzJy4K9jRFN5rOj6}hd@FbLzn8&~$b$aQWJ#!Fkx*YQ;P|{_P zX#eeD*R#ud&`AHl56$?PD_=D(`86cv<`H1p+|MNu3O?tf>~1957twDZNCglTAK16m9%(!@1l zDvCWy>#JCC*fGlqKlY`-~Spl@|!Eg|t%k-Q`5W-p?K2~7`UFH}WG7(o3J3%PJHRXMypHr#c6I(D|pN@modItTX+p^pId|ilmb-=L-d29z1H&E=Npx1(ZHL7Pii4*ntw?mu37`1 z&L`F@vBf+auMutB*m86=SPS@JJtNmBtSD97g?RJaqr{{hf1~JB2Y2U|H`!(T7U)m% zDb3}Z+Kg3VUblha^p@9S&oknp*ceW|b}s6QwX}Tf(90srNi2WsvJ7JiiMcv&@}tcD z06~xy)}6OQ3mrJV&;K33giOOQCf|+&oru!_1fcc2z;Pz#p7^h4~OK*_DtXuXZSY63Vpy zuHHd5Ob+J_jlX!=1G9S7ujhuz9doxFX`#GLimty(FVA>|djm@e z-TZ6Q6BYiaPw@<&xmhj4SbZ`d%Tjos>*w)309AtN=SI}uCZ#RFRXLms)I)R%p-G=Wq*4A^g41E3NUz4BU2 z8p^c$E`Ui=Sr*q#;%L-2^Alvg$Yfb%I&YRQ?cti*RCyn|Z`Mk%Sv!d6%>w%F9A!$l+N&#;XLjA`EVMzx8^ekD@b%-n|1FRBPtlNd?B z5O+7kBJ2TcQQjiR2R2t-Gk2`fmR;5SB?q4ZDHo_7%1a^!@_@%+;mu2bLSBxzW+(8} zQA%^&%Q(uV!HFLaKqSA3I(fiQn@SI)%~FI3Pt_3w{THTYuuRq3&z!jBdVE7uUxFlX z)Tz4OJx}k;mrnaJ5UaWBWgP1w+GBtwQrNjhfU6FPOQ}Q?Lf&GL=sBof&V*>zwAK@s zw4xkaz*_vsfy_a4xI5>A_gZ+J(8;B(oznBgNO53ikxdy(JVE96R7MZ_J&=V-xW}-j zQ{{}~+MwvOF4NmZ5>APc5bCBsZ)bFd8#US_Q`>4L;kjsq8ZBSR&l-z+-!i}DW z%j!tn({DFty!!M6 z#!TDW+^m|vGGyC|>I^1C1)le&Xp&yxy&B1{?9vcW+dMGd5IOaG%m;Na_eH4il+D>! z)inKLcm8$Wu2c+7N+CAoUO(W8RP3`-BfZ8O95>Z?eq@+DqE!g-=Zbq*8oqM&v{Hch zIo^abxNupE-`|%dwy)VoQO#M4h}5ttqxod9*jH{Uffz!EcQpQ~qX+`0zBA()*vLhU zvlVCF1Vq}l4?o^qk~)kyTRg2A{lGQSyw{5#GoV#xhu=OaO7u2D7paH7 z!d|XzPhv*3n(PF#X`X5Qm^)(YO_0#MGiCWaM~v;KE3k@9E>)nswwcfPs~{D1blaVK zhR>7U@;f!-v{(JY?F3Uc8)EqW!vbu(XHpqd#V6!uk*n+)-kJY08vosAgCwf5X*>$2 z!yXM*VQN~{IULdCr$_sP0wm*u+H=qN9=DjI&yzYyW3XIPnT~{kZd0_eDgKs^55Jcr zbB?JvAM|C$NRClNLN=p~E_!z)deSIu%Kb!7WUz6`jNmuzArrI#rifpRDTOA{MJ9#J z9Wl`ea82g$7NjxYK?9mv;_K};_;oj+4a!*pWqS;k3Q?cbyR2>FGCDJ|1Q0A2E zi798tB(FE&)sXQ%r@?Yn+V>ss0d%5Tp4h(1$vm>T#Fc(tQ=63S9FBks=Wk$HR#qn` z%4A&u->Q^Tq=LMq@ZLLJS~5*Gpb@!nldD2NQx6l=@hQ(S?@szm`>#gLo$wK*j?Zmt ziuM&ht`~A%e=&~Vb5MobcE}y3aDGjw!14)P+&@a;{=u(ljFIms=q*uB4Rx%wn?ubx%C2g)IGsutY?z%360Hwo`mJ|$pwQSAsH{qXK{in3)19pvr$;@1X_BJx@i7RW zb`EWRqO~SLrV9Y3TwlIt4=fK281J5R0@U|MY%zh!p&6@j;OlPVwR! ztxHLEbPpzJkD6Bgf#dkQp60W_dGQyJMAr+w|J2oLj~e|y)s1S8>Q}-Mxby!v?S5&G zYFBb2aJ>Js?lIU|1$E~j@JT;ICkiW_-pB;!HM?+JY!-w@63y#7{Sx>WEWj9o*wgFP z(w9pWIpDZ5^96bJ1TS$gvd`Yh_mS)QXa*d{d$a6kI=_1T>H83slMBpWV|AT%Vc;2j zb5AEB=hMk%Ap7CZ$X{*wH9}$F@m?G(q;Bx-AsA7*8lVz1H}o;F8JO=hdYi~EymM9J z7#TxhB0~QEhr^)YvrA#wusdKI=dmsNq*F(~VX}1^J&g$;b3bW;l4Q~}3cJb}#bu~Re6IE$0 zoetQNaL8}947xZKP;mB_gsHf=WSIbwNAa*f~nJVy1z zro}7znYADFL)Q-W=~r`>QcACNp`(8>?8i0L4|%2+F5SHu(bH&lawqCw;&y+M!~DRO zkg!i}+FGy5zq2@PbSGMwu+r}&Cf;^e+N~73S)&-Hjj$p&pPoyVe>0a(d(`txTSVu2 zLG0PItG73*B>gfsP4;{5uIX&59G1VGbN^Po&Xv4<%ig&lpYxW{=b=Q0seP{X2H1eX z*R@{d|GE+I@e`B)+mCTbE85UHFFFUoQn_%AYn2)T4ja2~!R6vJ+}>GgWRycFr=RwF z{g@HGZ=Eg%6uqWs4X}7%kp$6ULL$bf~n8ENLog?vuDMCM&KylTZ9HG9~+tT9! zv4>rkBVKRnW#|l4slROWQ*-?R6bK9tYKgsW$G@$0cv%SXHhg#+Qz(<3b*b&z51Jj( z+6QJ0k5}$tL{yi^Z&`r^??v_*Z2EKi#HY zWpS&;R%5mEL}B3fPPd9{ceh9G6u53*q%B|@(Jb;XNuQGZ!-?DY-`KtxmXZd()>ikU zGa$n)wr2%wfrYbi^?o0xzRrBn&p`07$?)tT0OxOpW27mY!lfCW`udx7$PHcBK53X< zW#6~`Zx)EmBNrp)aWWwS)P*V9JZvTuw~gC<=R{w}lJuenT8wS&>=2oo`biXdAXR26 z%k0R8N2K2>bCh1|`DyvPU$g3meqOG1px8_*-+I02{H^AXCJ^xn3;ddplmPa5aDBbe zmQhubd~;pLdl-Ksh^F?QC){2#rBKXJ_TJ0j0B64FWxmX~q$&2mj`u4J0wx!`9+~zV zht~hz*w%r#e6t(2sq;f)h-J-ZLL<85NaL=+)@>%AAY7W5+ym~;A>lx&y>D{sszIi) zQ>(E;jsQ=~?L8r_V?~nd^Rt`}ykThQuE=t=^72f&@Y?o-*S-C1xYRevj_@+a!pA8b!FW?}l4$&>?ijdZcl z*LVKgdUb`P^7#oYs|~x95UTnTNJ;sPiY@2jxLd~$zVPVc*{Xv&=GA@Pk6-wWXxxlh zR~j$54ecYlS@s^d^XFxAAT z4m*K1_R_9Ks-CCCFO}XDpO^|zEr)%q0(I-B{~@ldl)$TZf=Vw}-9i|C1P=@VPWS%~ zS6Q%F#LabY`^)!3-3n)_a9Z%RX-!KSO0>9bSiCS3dz%9#V+8=q_S2gi)0aYmUT%ID z9e-`e%XeJ3@X8#ym~)tRrQjLiiYf&F^fVhae%O?L!C59kWFb%hCx!xMPlFHQRM=Ej zx!djb%6)_A0v=_VNr^T~lV{uB*pDemhgr=`L+SyLTzus872h-ItgSiR44iM|tQ75wE>4;uemI&lVofZ(714Gg+kAB?VN`MK7`3*O`d1@;nKM>+dxzZs101A}05 zJx$kRG+hgLE4?-W04G3jDNgJeWVoui^EdIa?HDZ_@%Q=QR`t~HTalVq0PDYOT7Z}A zOiZ*efM~XQ`RG;1?&BIFQAQfX#cX+?$=sLyIVz+8qGZ`l^gsBHmZKGkX$U|dfd~yf z(TNrlDB%5laiy_R+nDh_y#j=4P!vA<-%SxjH5HN>xssaSBn~PB2*i^e_AKOOFsCSU)02r(mtNsgC_1twcw5~24FvIaAG@gmQY_`7dkJY#*8wHq>p4e@R zch!f3P>c=7s?T-Z^xpVj^T$Kqv+a@H^5p9q_*U9Rt|!hA4mBxpN5iI(-`k^rbFe$l0nd#1%9pYuD(;YDH*ba$OK?rv z3fwBMdu#S*>}k*@9=~sm7i!fYYU$+YSlcdkk z_v#H*%aMBnvLF(d1y=|JrF>29>K za#alfT(oQnslIu?5laBBb4kzCzm=Zx{{ujmGZ*Sd$F|u7+kt|h9y!;^z$(jPTF&z8 z<*@10Qvc1lFOrK}9d~~|#NPn9gh5K0C5S)U{zRkeeuhv}Ls88=fYun*sua<58#nhu zs48>^e^RG?b8euQGn5q`+ z?UMz+1-}0YpG*Ad+14La^$4_6q9y_=ejVmW8y7p^&rf_gT}EJF16$v5V(wk;R<%&K}zMlhT4C5I2)Q$Us3l`C^0 zFSYM1BhN0{AIaY_E_ojc@t7^4u~Uh#+iuA#zy7=%Hj_HSEuLSg^Y~F;sT{Z*#rG;C zdP2i`V?a0P$1lb@lj6{nZm46{x1KXM55~bhQldw+_qIc);OQ~^lm4`*HEfR!kGRip z_=#k|H%P7aL=u z41rO?eUfjwFWBr|iGY+~4g`kOwbzi{P$I$28V@M0VbL}S8YGY!s-D*eylbuGue5V* zqF^1uVOFnnYy}e#rG#)^&yEznIBz6H>G_{Y5Q6u8k~-Ys0v1@aQhxUVfR7QnRVs&r zs*p(T#ec8Ah$gwx;dWwo7_dl6YxAn7q(p$u6%a4s{SFPl(~5|Ymst_jpSw=mBp5ujcZMQha+(!nV30f&p1;={d%`Z@5%jWt1J5Z zr*?A!O}*+ZgB9K=I9`^TOdc+32A(QVp?O@T=1KLwHvQydSbjl^r~~I{1J$fG_XSmkdU3RJDr74B+VpyBSlbBxOfuLFF~A;3t&0cpE1O z9t+-4(mhDH7U+MflT$KMMw&ceTo=?ZN+`svOO9Sz+lU9O?s2sK{bu>Ed*OKxe~9gtq-R*Z*c* zocmh{Jud9{FYfWa5;h42E3B#|&Vu6s$Lke$8DHZD5*^cB`3mM}{PPY*O+8?Q6A|Fs zC)s2)GxQB4)7~j6m*bdqPp6TGjO8`{|7!;rPbdZKV3wKbtd{iWuxapgPW2pX#>#+m z@)EqSXUt3ee#N~_P`9HtgD;W`_tfMOm<7`8&2rf>#ijD8%WriwoESTP1H=N*CcC|( z)lSroOOTuvcn5$Hmf)~~wqP&|#O{LW9c+i0yJ~5%OqW5Wpv|#Z0bu$FNFAQg47hyX z{zwh$hk$)`R1xH!WZAjGh}Ut{(-x@|K#l@-W-6sEjeZJBVEc?S%RgNSwdbv<#U)$| zp-Y>+&v)i|O7lOYvcK?gcEYBgtTR!>STLcYWm@1`r3*O@v^@ee!lSGd6fR4Gfc1Fm z6j@NtaFr8n3+va1myD`F_DmV@q3(a?%L>5y({XbzwPKH1Js0%r33Anq63!3y9n+MgU0{_oWT^qzu7ZAR=`ge zrGn!enjyQy&zZhAaHzuvk6h_GP? z#hU`Cq2Nz7H_Pb$YQVYGTgv&*pcFvl@6N*}pJ>bJ0WvvGe?gV+6gwa7#ZnqJA|Qrf z%U4{ukRfd=fEoqRsXxk?(&{Om?Cb|fn$yAi z%lJPm;3hr;`Eeyh9~2}2RNeSoHrD4$&cK>xMwWf$-$bM*R>%VRVQcVW?^^l2yLzk~ zoVdpI1EoWcIlz$&&McU@1U}m$JRlhanOWT158j2nJb19T_(sU`@tM-vC!)HSNH%}T zj)_eoWDo3TF`--=NO$<`!E)k=Y64AXs{tHb!NC}W>hZ&r4shF7{#s}$PwFFri}N>C z>iDw-%zHxDZxZ)^-dIhjiNTm-i0vV z@Eg~k;Kt{-Vo3YAzW^%X=^d?u=5Xr4n8$0Na+T^(#_&O9z#O2A^t+a#OVs1728?hV z)gqcNSHl`Ky*?8`@58 zr(6G8j40|JI1%z4JSVi^Rslx75@&W%{cn>fUN49soIWl=3_k0q{B&A@i-;He=MeIM zTkUFI*@8n40=Hahp4f$YReYHZ9ID>64@ug)Rxfb|BKA){Sj;qpdyMf&yzMMQ@EP2a z%FBCytbHV-MQ`N?Tx z=`I&v9OFO{6D*H5M;*7g>is#?j6?G}!sWW9bvMM$boMq99aEuCT_g(*%BAlqlSdhUab>{R?yFH6~2y&|#E*!LBw%j+^QyP8Zax>zdRE0zH zcd6i4sw6q<^d39Us5l&_%}H>A-Y$DT1usd)on2Jl;-rz3XmWz%~W*`7kir3G%zoxhm>z7fxm(gR0iI*5Ug$7qbbn>XvgDA*+C42n2 zVQXWrDaTRy00wYZa>Dc&GXxm#{OcK`nq*RUoa=8pxL8YhtsdLyXNFH#qKNdp225d= zCqKYfQLmqyklThBzmUX2RELmk`O{E->hF)?VkpdKn?tV9$yj zrgueyv}1;IO>UqLk@D;Md3$If#Ak?b))|@H0G0W6FUFNsRJ-=ML&KTa!}O4h+m;S# zV~o{N&Q;dxqv+-L>#ciRjy-vjzkNBcf`EQYe}3=Zx$e zua&zq!tA7*{`7sel&|aT0`TrfR;awYW+5sLO9OwLYz-J_zaF!w;UG?YD2yJ_-~$0J zsd=GI#ZB0@}8pzGT*?i*F_PA zJ1vD>$AMeu*mR%ep~&5b#s2`~MbLayLHeAkD&G0HjAn<8wHV_K(mwHZ_Ata?n6q>*#YEo8aoM}`>lY0Gw8N}Li(9! zkut`O<&wE}#-aA?tI`UxT(dPXq2`Bp+6IK_I8H`nG+UGd?T?qNDoVyTgphE(N~yoL zVsJlN8pQ$1+PDgSl{#Oc-sI6Zi5WC}LBoC?b;s;Zztt?OPa3(D=0PFLd92+7$V;%p zEJnvk05tuJJWIlo{-$hxKq1|rUYQ6rxC zh$u-~uKsp%pBWAXFe@N&6`{5VgP`LPA*UrOJ3`$!fdI>oO=))73;H%evpVnYC>3gHM#q6Bm999y#U);2xOFq4yx z>8hCOWVvQhy-TDsGL7VG9`zU5x)OJq2+w7 zxv1FpjAQo&C8Jd$`-*0iYL&(r5(UQSXkolmW`bu$X$GQ4hUs9?rzHp^P6>SGe)RG7 zQirN`8T91W7-wNp{FD?Gr4L|Qq1v(ow z#PPqLgBpst9YT}>sKH7g#0I6oRw*mf4cE>j4+^_{x-g)}|NqO&}7?xa#cj)q_ zg6V}`$FaJVYtJX$cf@~M8vsMH4mdC*t1}3Ee1t{;AqlR6dCkL7^*SSeqQG2tL%Z{% zs1KF)ufcYpJ98f|gd79m-=9AL7B~BdA&uK=gMe9dHX^g0D|dYK+0*9vl{XuUN4rB4 z6FW45x=HinXr7J%Fh-fIUF?9)NYQUsFQcjUd_F+{nvDC17LP3gq=9`Ow^Yd1#WoC4 zqcYb`$mDV%e+y|vg9Ia5XPO6d0rl+hWDqEO{GeoeD`4dA;7>f=$pT}$arEtuAppf3 zqh1VAdrQ4oMl);;%*19q( zRqu*G!5Ayqvah@x<49R8f3M(>!KpF(jb=vF<;E1m(8_-NTt~kN6u7O1pe9o!<~0`z3BlkU%6 z!1GS@buD0g&oI@MuH=we0&2B{V&JnyTIGK&7VNj`qdQ=^2&@K?Fz_td^8eY_#v1%Nbr_(8cB5wX@(0&UV$|;{}5K{bBfIub83RId> zH4ufe{Y4izCEj}|1{^!W71+$H4|=ovwYj$iv+7*h4?5UAdhH#SCmp{hpIO{)l%H3D ztFcRxY#gC7muQh`!*_b32JnB$lHpG72WLY{vaDQy2j*!eQDC44OmdfNWLH<6=fp;H zYGOdA?y235pk!UNjURfY=_Juk-&XklsN%{4q0Ha-JBCS_p(00Ch%U`I#)Oc@ZlYym zJFL4g#yH9qa%33^3Cj)*Gmgg5YzHD&M<0E?6nPll)yX+~~lirZx8l=SyqC%-Os^$?ih#^Aujm-X15s z5?+ZRZ|nvT14o_a1zAWxYr0( zHU@iTTh^C~SKqxHdt&j?abw=o8%&3&z)IjggwLS3Sa`W4Y;Q)5yL8Q56}M9gCxFH!~SA9iWAlTOTqV)Xnu%L z$|e{-)!G&CI09Ij1Q5}7Gpkb#kq9OPqNo*bB|-LpM)w)T@E-#klW1%k3xp8+zD^9uH+aiM<(4l*MDw z5-m?`9{8>wtKefp{U^+V%V~_Jz7oKsQTRuc7d#Z42#4Dx{X!NXXFx9Qg@3nD7aBaK z+jCtb?nc)a_JPfCZ*uK+I7q4Nu4Av=pT-q~LNFXBJOR+~J1;ipGjF6P@*IN54{40o z0HIAAbWbj(Zh;$Nn)54vL@}RFG4%YI9TNbYpg;?Tt3sO#WK|d)pYoFDS0SF|NfFua*j zR`BfFjYO;687Z|FYyI}5MEdOwLHTwH_vUSfB z0rL+9fm-U@G7n(2AHt@;K}0r0{fIrHWtIr*Z{MyA4vk+Rzb&EXK~Tk4{j7{ijP>W} zLw;G6`gyV~+V)a7H`T4@&Ue3KCz;xoNc00Rz@2+OSA4rZI@DvdD7^u8p{NC-WNos} zWA_5q)#J``kh%@Rc&Q^V>MV5VcrSTqQiFA`mfmuu;4w7FSTFp|SmQAvV_eG(*|Kbtyoc}!YflIrf1eGrS0WrE5K1Xe128zu=bs%arm02!b zxiR<+4fB636-;I3tXSp_?A)XQ4_w_nJe#)u@TG8QW3?(KFH24rIEdg^t`!&gNZ=iX z(KwnEJ(0ZN-g9~F;%{>qh1r>{<~b{^&|tLF>Wigh;(g1aH2JKMG|Qs#Fv`$B7N${Z z8b|HIwL0NNVP+7y09onmG4$F`E^?xw)_iGSOC}0z_>s-$0tC+(uBv`6Rt}B6PYL=Z z5>?$RebRNP$sRv!Rc$Z~+=6|ZOiXo8*od6H*B-N`m)LV5x@gHFBBCW+y#E_U27~f$ zJ+Arin6d6Cq#IT?dE7{mdf;HU6}oi0k5l_)-zWendajUVLXJD{FLFC zX+-%?CKTb%5QtgdDbOC>>5B%-^te!cNX#kCjcs4hT?MHu@Qc9Im zLqWk)T7&T(Dip2|8pLU!sB0GGlcA#x`YY9u`5z+}v@&{1o~JrV`tP_Wcy3_Qjg86g zvw_X*(Pi77xgfa-u1j*&Usi!W>oZFcy7%(EOxMYD3om;;kR;r$I+L@w6K~HHtee6S zL_iib%S&SSg(Em?DU?UBD8op5v+j;UedmkDY`V_}LuxLrb1ecS$QO=^J$_lYWfPnw z*4cgv!H2TXiJv#5eiqu!El!`6&l|bkx$kpQ=;&pXnnw47=3Id?G}&_&Yz{DR+rp2m z&h&bE8LTX4eDXOioyV{!Ng#t?fEr;A4dUFFb=O13ZKU}@j&bJ1Nk$FgnE|qDuHEf* zWTu7JrMM-q$ut35Dc@^8F_!e_S}wR7>zvm`rkL_aA*O6gla_Fa-**pfT&Y~I?U@|v zzh2dJ!k;-Ffr#0yco0C<(30BSq|<yT=y@60MIR7lT7CQXRpVhWH(0nHBQs7AkW45%Br?JL5Ge z6$tx*YfT4`cxzPGpx7tZ0JU-gGL3;z*1iLwDg=aQ$575^h7 zM@veKhZzlW$QZSa>T6|jJa)+~HS`P%ueU&PGmIy{1+@}>K19TxQ6WOnwVt$NX7m4f zYGdG8Dnb5Xlf?A`Lt*^^O<5T!cwmWn{E`)`V1`(Ar~8YkMC1J{T7f4tREKlE#eOW; zg`VsLbfwFnTJh$utj}ldB(#&>!NX2l?cF7hc;gVqT$kxxx^EGpf;1GQ^`3sVqIFv= z>&&Ovy1zSzWfaW3Az=UNHYu96qoY%Exdou~9Ie};cMyF35hi1LpJQx;O`)m_ps^-% z@qUmd9KTH$I**pG;i*_5s2~kcGmO5FaX1|bxpJTj6`;6Gu$mH7PlY*{q@1np3X0Cq9WWO%41u_(NPK19We|vj01@s?Yj6ad2iZv=IlFRXdOfAVw`BiY z9_=ciH87T>A|$zKP)tk&zPBPvB*dxOL`Y51K}u3I2K@eVIdSMI6-Kq=fSWQ2aj?}W zJGsj-1+^xQH4E!1W%+5~c1ytzbMKRvYQo%h4o!rA zdQc2&CbdOQKNH=EOV0O9zo0Tg_W?DpLN~ulS?7}q95S;xq+_3CEo;{6x}Vv0Cm&mwzr@oe-A6k*1}V`RQ;gYi^%SA{k&Xo8Bvk_LM!=+TCxx zlr){k+-f|XlsP9}T{*d|{Hfi%BFygmU~?-7pB{Tt975Rr$HHy1%o)Y^kpP=Z%OAJ8 z+8CkbcPYf?>YfR2wgvVzh**1>$C0?SJz12Gl}K9YfO);==uXaqw+a)lE$g0`$gDpq zyFMjEhc_tQ!&cw1pQ7#fz(-!EQ*C7Q z(sK;|HRPM9jtI_eboTdo_?^#bN{;Q#to82$Og<03|F&|S(3||I_epzCTp0I;VB8uT z+`T=c3s)@G-nGZtp!=;Sn4S6<)(=ID$f}IK*VjXms#MYD3eOP?8Wk1V6+R#z=gXzZ z@3Qi%4?lbAXIs6a#)y1P{Xv^}a&9$M(M$aS3CTM}sJ!Ng;L*dq8TH6Fg@9I&Awf=C z@AOrp`=tZNDkt7nM$|3{!~I|Q++q|^wrEb2O1$fY+ICD>(Y=}NU08s&EIZG5Lcb2o z`tpbQ7Z1TmFP7`F-1A?}(d?KNxMZ|aFh=bpLai)2m7H{ok$~=W#U91*g(lP-%zG7f zZ*rbx?y%rPTg|?E2W>C%7niwF&y75+xP$02(RPAy-X$5(_S~QtKR}1^R;z4!i>Q?I z%xxw%X-~IRt?i_!;9 zjGw)EmFF^GK#RW@geA_d34SAt=qQ#+EPOPnj6?@qSvG7mb67b%b6tZ1ei=Be&S*Nok-F8@?< d0de#RR@;}jBBZ&Y2 literal 0 HcmV?d00001 diff --git a/resistant_lines_files/figure-html/unnamed-chunk-13-1.png b/resistant_lines_files/figure-html/unnamed-chunk-13-1.png new file mode 100644 index 0000000000000000000000000000000000000000..8cba035df35804d2028dba8946e4fd0db49db1e0 GIT binary patch literal 13456 zcmdVBcT`i`*C@IYNI<%Z0#bs-40!=ma@6U!Un-LJY-s8^|2n1j}02Bb60q_T)0{{rd z+W=>0;Oq~a(|~{RcmT)SxKRMKp^UeoblA9gI#D3PR-vd~{?7jBN^|xvc1}xkPDAf4 zZZ;jBZYiE_xt^+5kf&#gXHbx55PHw`OsPd;{GHK-DAW8^uQc@MpN8Ix{fk@tiyb(ixC!jwX_tsz+%`^3}J1GXKhMQZ7#YHV^|A2Y9VY%b8boV zZz)DsS_?u)1cddsZ4AHs zc&TuYmP2Xn)#O{ndkD9TGlZwtX7t2ju$C+^3^1pNqa}{Q-c%YNkvV0G7!tB>l#E^tS86cQ5f`TjWOfMsxC5gY=JuDwSUfeirxsn8T`zcKxXIN{o=(Qoe@7DD@NLd^Z6BW|k>B**1{a34QyHo1Fd?9N;H; zeg0Q|W16O<x$^zji3DSy z=ET>J7+Xs!kao1rdG?DS#MDz79+U}xuJj#Rew7%y=9^EP-&r_miMlv=-T|d!Y>}8h zAC4N*4W28N@|MB(oI1B(grCB_-S6wviojQ&)(x)is_0^A})pBYbUoCNTi zKhiVYl|wyyE^?aJ?shdH<|^}b)D*D7NSuZ*~ScVJXY+!PCcXkv1 zA}C1j0$T^h`%ZU#OuEe0DEKLQ_A4d?wUG>K+6K<=QM2q#`~%i(gD3AwWt7LMap@e% zf%nAvQ@7b@{>bm-tfWF}S89M?j0HXJRKXW0Q&u8jqxf+C2ii-X^@w1uaw2?tk}0EKB*=K$MSA*YKJj`NMy*CAtJJeh^*hSg#XL@|xHGsgP{ zIOYZ--E*9{oMD~Um=@hxofRCGq^2l)pC-uxFWrD-MbkT1#gg|0iX3nY;jZZZPLM=o z#7n&ht4;#(>48udmSb`i8nVJPLF$k38j^@BmH&Qu!Z#pMz~4!}j-PiWXd>+6aR@uW zWExtXb&G9zzg(#5tkq|}#2sGOZW1S&sn4tW8Uqg)WAh7UbK!nC&fR)6bv$C-dF|Lm z;tv=8*i223IBQH^>$EX*anLN*MSP(Lc@as%=%*=D4iOCT8q^1_e^+W%!C;)-H2kwB zIQ&T@iI_ZKQ>@|T|9XM0DVD1kYJ0DO}MTE#g*+gr_fvej7T4K&e?D05ps>WH8{dRm4m^|G6No`t5;+V;_(8+jT8?uJ2Lq~2y*L^H(H)>>`+O=F#)=PMCTqEk6iy^DVr|Md++a1>C^)1anhkGQB??tE?BkBv8wrL|+B=yS;qpl@V9{UzYTAOP$k=wA zwO`!62^ifz_M2F6GrmbQ>IJr;uKbY&T<%opJ7Fuw#U9c8q&#r_cYoht6&mXoPxN_* zmXrG7_r#%e*)~hhC8SR^li=0vgeycv{t$mX_#i>6q*<3FSWq;~wfl8uRc(nj?`kU1 zUG^^yo4UY`O@8(ku_1p>ieJe?t9H3OpD`}#U;U=IS8aGqlPq6qVX%1!J2r+UHE)c) zeh$l8*o|h?u_)KI=2!4`Rv>)iW8d?NugG#59p1%RwCU}W!<8Nc+*{_gUYqWYdJ^7X zZ_ceX05fO%C%&aBd6b$$*E>eoJIed}hgaB|{59sKgL^)1#F94x;Z9}lGSy-Z`TN5V z{|Qi(tnfk{K28N@dtTaeIi`Ex{G&$E$tGk;1aap-x)74G;RS%US##0S?=b)=^I8WW z+9!CmZ`Q5{Ra3#YU44jn^oOdqNC!71XObi(=GO*Ier=n2H@|2maB}(yES41k}5xn@j(dWv~1bpqX2^cd61Uk!YYt5U78B3}EB@ z6^Ox!#f?i_x@T&#?#=R#dwW_0@Ym-T(Q@sy#k5H~m0l|C^INw}i>_Hy^hKHaF<>AF z-?qRzVI3MiDSIZ8aQ-dj_-CTA@`QedCAf1VZY)O_5-|97_(~Ly;}1_fRKJcUTuj@5 zWRVxEcJm|rq0ouyT!&8s(3!SMG#W`Q+ZN+}9xE?P7^LZ%E4@_O<(d*c@cdI;!vi_!J}ZdN}Pap8Z$*YNT=N;)jB*~8eA!(b$8>L>e{>VnrtD7@UK2B|Ce>C8X2j zGyF3kL4Zy9DrLJMkB8gaQWqLCn$%jC&SH~T(0SC_l~>j4)t*#ono9HxpJ|Eb+&BxZ zSKuuL_*k5Neo103Cii^H=j#+p3jPBY8FKx^K|*0lT{^u8Jin~13C|iLRUsH4RjCp;3ZajVyU)Yr&pdlE ze#Br`;||6m=v9I?pJY1#)vgRJTd!!Ty6|z*EYM~Eis$Xah5QLRD%ZF4xlzn>1>3uF z2`|c)a)%j1kWgN}T+PC)?JvUZDTL=*#nd$q7;!}pbWWtyot#~7iTGW19w!b~do{%1 z?aT5K3XPi{?o5Kx4I-6iY`}sQ9%XVXGVHq28Wo?ZU5P8oL^CuB`FMt>$_>-WUIB2q zpCw{pc3v91XU?gtV-IiBt#vfHP|HJ|fP3zqkIx2!2B48S9U&PPO7n9;1%9%x8Ft#? zR|`Sl%2c3;cvYVQ6dBbac<*dhezDQJxP@PoHAlIZvfTh)wtK(3J$`nVGhBF`JmvYA z>mqGUHSVD&*T|>f!{$hfNQRg{MJUbRXPYJYmY;uaJQoz0%{^Qx;7r?+snKerD0%s# zhi0<+ks^ZL$=J%#BuZ%jDByxp>f_Q1Ry+iDa{34&HH*bSml6-z=@S_U5%%jw` znfsb0xpKz}%2u9vrI;O3+Ta~dgoB`&D~&5H3zl8tw_S5FIM|k>^c|LvL^YG>GIHbjBy`UX8kf;#4ZX#UH zR}v>4CKUNp^gefb5J=j-fOO_rZ%qL>sq8*9{FxeeVWsQP#X@m_en8v%>kXaypA;== zY7!Cht6x*OPq%~p_>SQNn}GA9M_|qpd>pId&n;uCzR&b=Id48yC)ma`tDT?HPgjin zl?bbW#AW{+mJ{ADEt(CkU(m8FxB>Rp#3G_kYL-+@3A&9ba+($`_MFT6F#~T!%ir)0 zNzw~#o||0M%DMm>6<-Zm>ulue^psq*I|xJy6u3&(sg*oRf}zxM8b z+jS2-bg1Tp67=NxA~j!^F{jpkIF!{a%GM#64x_y-SlJy7E-tA2tSISfx&y-Imvq@= zUCdET1hMznq;u!lw=R!DPM(>R;Zmc7-!1X`v$n*b(*5OLS;C)qNyS}$;Y~V~7 zv3ZV9uK+H^afSobZ81kK`7b;3R~fcT%+DCbC$1qecOyf){oYPp=cn*&;Zg&j-0<6Q zHI4LHG9Q0r^fmdP*)~94G#qYPiD8YZ&EB$npjEYJJo$+B`wLI5^qvI9^m(RxrhpHM zHXDz1@GT|1`%H4+VmSwymaV+j-n|}FJoany(j(ZtHpY-i z0;B7q!DYbX`1N@#tiO3SHIXPjb*UzHtpS+mw@*vJaJ=-J^oG04{T1odVDJGQ0b@b2 z>X{;op?bDzF!&&PX4j~C=90yG$TlM~i8ig;$=HKtYs4=klh8vkF|w@UR7;T$)Q!)b zjM`WFu3#iJSvyU@|7pnOPy=moGcB&)i9XrusUU231d?oO+d(4I@Pl3i zMQ_!iK@&r+Ws2v!UyIkNq&N3-F89ytZrNrWckbP<$e{*%#o+hRd}cJBF{SH_W*Q`W)HI2qOXb zU4QJ1DK+^r{&y&0kvyM2*yHqVo69irjSo*Aa5*KC+-@Dt|H+Rxy3af1=x&UWqO6x?jAmA zc(x%uSmkA0liU&Q&QW!@8XqoOe4RJc@~qo2icPV}-1f@t5ozl$(Q;M49>TkdBI6mj zxxK2bUDf+WFQrCl)7?}9vbB$vo{|4+FgxssSH&S}lIr9?dsoU=&cMRDi{ zhi1dsEY}O#mYO3Axj)L{4r#JBf7%l9SB8CDm&?;$c~Gb(qPX~*LYmqxr0Y_^9f;p-b>!dPY0@AuT<(w@f zEv6=NR2(L;Ua6+Mpc!)mHjR=!xiso8%xr+Vy2_FVtW;_qp>%)e4jwB?#+vTa2|BLO z3LN~mbz=m(%xD*F;cn=-Za9C=RCInO<+StWhp7~wC(<9D2owoGhHO(K* zi!IUoDRZ{>a>7xt1SNaF9(5@YC%jpTs8m<`( z%!*hOO}JKv&Ln;Kjt8TRXPPc$V%}3^TmpB0R1LWJ4aY42v#o?qPIsyC#DdfJ8dS4q z1#P>K38|1oY=|Y2n7R!ED&2ck^-hNijZ1r|Cx`{=(^MlPNX6V20Qe$wD4RhhG1cz; zo_r(t-XGu^!aTXL7T3u?T-jj&b_;^Y0&Ld%`(9Z)N&{bfGbW+UakS1ubpsQ0ql5Br$(r?KX*b;|dWat*s5}W*r zC>bznYL$z(!OrO9FT#o$BjeKA_!G{SS3=;EPT4n` z5PVv-&kbNxp0`9uEp~lCHqDcO4A?! zbNH3W)rHkz|N1jlqcxt*R)rc8Q8!;(`ZrFjh5e6Ww4KJ821`D6-_G-ZtD?cye#X-_ z_g5QaZ@>Q(CZEHskA#z9xk5gb_AydNVE#uXF~5dmH8jnWWS}05K|K8VuxP0Mdn`*8Sg6q*%o}0vLRZhFj10C)#+> zmX&>diJd;#i1oRLvTwZL6qLF?3yq-G1@}fjO8=Qj`R25l5GCczGkfW9j}S@h}K)P#CqbUkhXyF=V=GIreF(j!#{T zLw$_cYnDOU^~2R;L+nnDCN!k;h#^)goV>3Z&m#v0ZIV-!H6OC5DdS5>Kcww)32&Hj z4AaW;0sZfZhyH5vO6dT1GfC&NugSa@>x$0=qu$u!$~tUr6X7}L*|{`2U;W#vZeoay za@ySP_%h@}T119j$dq4q$)>KGJ;eX%+M=r{`Ner+_Y&jthlaXuU!O6Vp;htsAwuA@ z3C-mrsbQKSuQ27B`a&^^Hxk9o&ty(7Ug**hk?1eH_Y3LCJ}qu|T?uOqAumI_wrD49 zv9o$hxlwk@ysI0Lr!KC>;#$3OGHmbqFOTmQC#I2{Z(dJQLO_4hxu6$(=$K>}vyl23#g;_Wn2y}s9P>qCHC zD@)@cWo)i12;`bJyc1wcGZCq?aMN%1V1RGk_T5M%ry{khAz@zQ1m=9Rnh(WQn0Qs zvakE*(ywCJ#dLJ2+w(&dZXhXxk0i4st#>mB{^(4U^qLyG4&KcGtMSrNfv2T89U4ShD0Dcbdsw*M(<)*HC2yeQ{RvOYrl!w&xC zMcQBih-fQ{opRzjzO+m=?9BLR!Df51iT>;|6a18noLr=!rrJ?I?DV z&;AIuzQVY`;IZUB`~wc!`3)X{1pK0%iEl;R8a4WAjLb@|ZYl;z1m=LJrw)GjlcENj zo(mpc5V8rDy9Pf4rW(Dm{R_wf=Ll)$W4h{HG(y4h4h_1($Y=az6!SS$X+*LN94y+& zk{A_5E&{VyFe`Ipc8Jmn%wIzx=vL(1tHe&c#nX2J*hQ-$Ww}h{(Fkehf=B|!r}kV^ zAhE+%06HB8BeI`K1nC((QI*s3jT?U=&wXdVBolPN%FaN$5qxX>XMna9sd zX{Dj}slK*zc$mUy)i7@+-6T~j>rf*vso{+$dp2vPnI7xU|Jbi0pWY4Ytl^xohaDJ+ zp_MgwjfY~~1l@X8Az?kEI_Y3lFSef2y>@#S4cFcy<(=dfIQCDBGvuDxgwJNZi!=m- z@f;0wOPV<{ryU!g$u;1N>C*0LOmlrL<|v7=A4SaR)2Jk_!gBGj-Qr*Q)OAL;I%s&h z=1_i&x*7f|wsMrXbxDgF8!QqAf=~bLC5JlPO+7zj(qJkiF2=u*nvb=R3jB&Sw3rL@ zH0Yx!(l`2v)Bflxlra8y#Zmpcc@I>S!OEfoO;m|^Ozjfq^t;2#kjeG_BZ_%<#Ed2S zF3xLs%5|9=DDFMXN=$8;!oA0xKEye5i5M9h{q+7$<;}67rjPq?dLbFkxbZ|u>eYwp zOSSW9r|m%MgWS|yv==2dT9ddwblts@ z!+U=*R4y`^?tnR=71>~7d9g+sQi++5!*{pOTkSKU5r7F#RkZ*pFgZm_@a{oLMIg=& zstZ0A{XF@tq&IO3T*`c&_X30ClH(_pZbtg?Ba#A=FBe6MXz}w3v~)=!N9`n$Qd)jO zMCPbZ+@y~T4Pk!#GsRfq)Itls(#l?Q%T1y2@8tL=S*Lf)8|IHv#r&5X3x~Y;?TWEu z^9l((WsQN^f%-#Jel$qd*P$VA$KpOkOSNus7KP=-XUj#}+5Xdf zJ16W9hVSlJyKdJ(8v1j2-4v($5VsFpBrJsLuejSiJV@g&G>hNe;`r)Zo7D6g0%OOy z;%1DP$Xpt31bXt#F{Hx{WK7k-Ma;oHA$_td!~iR`7T}g+ULo`HGYG8uip)h$WdmS} zpS;`zXX_-KZQh0kV2{KEBxe>&dT8-F`{GlqN%q z{D={!ek7ZF6XEl)v>f4W!7cb?Z|Q`vG&r6Kjvx;Kaon=^8QL)oS=Q-ZGOv_O?f57e zg>+)Qkz$x#Wx4lc=5BD()D{H$#&t_*C@-h8wEi*q*D&Mu<$lM1Px<2Le@^)_uSZ=G zRZHOPE`ynAU0KQ@o&~novsn6i#$-3D_s_Pm3sKMFO81;WN!DHwL4!2 z%kK}HN1yP*U&Dc|8$fKFxO!jbCCAd`1yd=|10 zEyBOyU$~I7^p!S~yKxq4e8EDnCO7&5^-ak*VZi$_;cix0wJmcY9OO^I6xOJ9jggxG zfmE*@K|~?G%YmaaYH;BK;){;E%r}#MqcIfeLlpR6@D7lu*Xy4oGUL*&Nz={bG`$G+ zbicHIHCq&M-yu8=1C>1Y_<@pseM43V>Y9uys6MR9+V{a%`|!^S1HZ-iAm4(faIZ_E zi}|{k7ORjIfSf0o zF7TE73Eq-EsU1+GUss*M>;5@|>jht%)AYB1v*f*;SFyx`ED@!6lfd^!j^M%<%R(>3 z?+m-cb=^ZaO05sQpPe47_u>frGB#f)s{IgwtGU$-%oRL_H%j|yC;jS;P@~sr04dEl zN7-$!6XizGtmy>Ia!N`azMxsh7?3Q@PO7m+=4&u??@pNHiED7%t5vJ()O~L z>EF&$D2^nMtNh{AiH%e9v+0}5LWMZn!8fsAOtJ?3(HRQb*^fY}&C#yAexG?kGKWt2 zutmDUt_d5$9P;L}RC>hTLET>y1{CtnnF57ndG~>s2GN}iWe6|Wyi|xi#S1AR%Mq$- zH-Fkw7U!YCgqtx4ImD6j3;I{moL&AkE^v#0nNM4-!!1JczU&INO^87-g3p z^C*3#>rJJN;>(L|rG?Ks*-^Y;Md~SQJiQllG4Oc4$?H)uxcRe&YnerGU^)Z*^Tr{C z<@f$*>JAh&SMzBdDZ2nA6n*#KN+Cp51vQzfU>FtMuWInra~YVOg;n&a{6CS-WVaoI z9ZN1MYT#Zcq-2CFQj$u00!QxE;JouoUlyspDHYJ9E0Lnnro1-&F;VEAmtkRdYF|_q0yoyb)F-0mFO<@CJ{WTN-zec`1UO&F?mcHUZWgL`7kl$!j z_Oxb+N;iRPq+28vmWG8nO4Cs6GGBX*bJ2!B`JGnEHikyAoO2^nVgsGY<|PK2<|1azSGX{x{ggckr1xpKN)nuC(T`q_#5^F#Lq?>G)hlDddne7 zX(W|AEd<|tRL3E@`Atya8-l=L&s0x*v$0kK9j%U=z!K^*|3>_(mZL=bBP+1A+mo4! zO?p-JrwX2l;IquLDtOOc8<(55oPGwna zy8foD*}z#EaNY5wE^4oK!_8dqm>2({w||5`G=FoHE$Nl(CJ-j(xyPNqJjO_PWIykj zwk0fi?xDq<;-JCxhaH>^$#T2c(~s;IeoY~m-B|*CgE@u2mIE!WJt~$f8Rg9hp4@=1 zO$xC0NV!DROeo=C*pgOh#L?P$sCH;P*r_OdlTrNyd#LW1l+p_-Dqx)Ai>=hs_!Es# zyc3N98P)n|Mk~(4ne|7eHg`6SVH5OOl)%yn$57?sO!TGt0mVePk~v4SZR_Gmz~jVR z{57^fHLx=PSLYHk0=g<4JqLhWa~oUXNJ4YGga|zRj$=c7W7PuD1okIL_+n*^rD}Q+ zbm}PT*J?DEm-T`D=}`ERgEI1M#`+*TNuvRAFGSpt-IF*b?L&y$RET;g`AUM1e-|^= zlK(IJ;L7DP>8=q2arBG~`e{l>9XK%`1_Z z=Kd5UWGy0Uf{1(W&t)EuNTp^()T$R`x+6OJYpe$rg%zMZk*kmHsU*wsT3`;zzySC@ zx&gX0UTdKjVg*m%sP_Ho_Y9kd-OlQf{_-_0sa?<8;K-XF<2l?NtC23iH0n(ktNu} zQGJJ;4+ROuH0)T|7dvDPF#?hPOIyJBrHypx{{V^8PE?Q0RQsQ-z5b7C?wNKhRg5l| z(+7t!{9QOI`Tf9+2rV650V%jp?piR~R*2h)KaY_WT3&qF{Ag1(c+Q_o!v}*?;XQ4^ zzBF-m1r2_GFhXiIm)MeZSbg4+Ib)hmWg(LrKMWsO>EbuN<&BFoE1H_SJXS0s8@HrfdpH+VZr6$jIFS(Vu8X#xtAl)Q#7 zNn(eCc{#C3z3(18iDc`2QI9N-9Sw(^7Qg-YW>JK_AXqF54;c-21}E?t?^u|^UE+=R z93#Vq$!O0Q(T7oGP~+~b*mzt`Fx0vO%6&zIH2q54=JOH$F{f`bG5o%k%-xH6q5*&|DQ+4<&v9@;sCXYS(y*odByrYOk5YLe$?NHMv&ZXAQE&VDo--A7Sgr93j zfW`_Te+pbTncGXKVV#SONF>wKCP%`9X|T{-pY!F5eXgbovH5fkD({O?)sF^X3t!#QpkN1@%v+N(dB!QLyC~ z{D(3fJA5GRSGtv<`|ytH~P+^HZg&7VFy+kUoHHH=KPO| zW=>RvV^)0VEEnu<5UG10I}N`d&5sFJU3d@sRQp9@u$sH0(A0 zdB9u{97KA31z1i*91f^B=p}MI-m8Nv0>&a=c@9`KflV-Ak7NFa=#0qo*9hV_eEs-> z$%yJOqME69egUu*9hFZtQ2mHQ)$0GhAB-q4|Fu;oyPjA*L^B3fuUNPI;WB2z{{w#Z BHOl}1 literal 0 HcmV?d00001 diff --git a/sl_plot.knit.md b/sl_plot.knit.md deleted file mode 100644 index f7138935..00000000 --- a/sl_plot.knit.md +++ /dev/null @@ -1,218 +0,0 @@ ---- -output: html_document -editor_options: - chunk_output_type: console ---- - -# Spread-level plots - - - -::: {.cell} - -::: - -::: {.cell hash='sl_plot_cache/html/unnamed-chunk-2_a9e0c5c25fa201d342586fad77e0b216'} -::: {.cell-output-display} -`````{=html} - - - - - - - - - - - - - -
dplyr ggplot2
1.1.4 3.4.4
- -````` -::: -::: - - - -## Introduction - -Some batches of data may show a systematic change in spread vs. location. In other words, the variability in each batch may be dependent on that batches median value. Such dependency is often undesirable (e.g. in an ANOVA for instance) and preferably removed in an analysis. A plot well suited for visualizing this dependency is the **spread-level** plot, **s-l** (or **spread-location** plot as Cleveland calls it). - -## Constructing the s-l plot - -The s-l plot compares a measure of the spread's residual to the location (usually the median) for each batch of data. The spread is usually distilled down to its residual (what remains after subtracting each batch value by the batch median) then it's transformed by taking the square root of its absolute value. The following block walks you through the steps needed to create an s-l plot. - - -::: {.cell hash='sl_plot_cache/html/unnamed-chunk-3_9187cec471b10956d63ffc9a30e6f07a'} - -```{.r .cell-code} -library(dplyr) -library(ggplot2) - -singer <- lattice::singer -res.sq <- singer %>% group_by(voice.part) %>% - mutate(Median = median(height), - Residual = sqrt(abs(height - Median))) - -ggplot(res.sq, aes(x=Median, y=Residual)) + - geom_jitter(alpha=0.4,width=0.2) + - stat_summary(fun = median, geom = "line", col = "red") + - ylab(expression(sqrt(abs(" Residuals ")))) + - geom_text(aes(x = Median, y = 3.3, label = voice.part)) -``` - -::: {.cell-output-display} -![](sl_plot_files/figure-html/unnamed-chunk-3-1.png){width=480} -::: -::: - - -The red line in the plot helps identify the type of relationship between spread and location. If the line increases monotonically upward, there is an increasing spread as a function of increasing location; if the line decreases monotonically downward, there is a decreasing spread as a function of increasing location; and if line is neither increasing nor decreasing monotonically, there is no change in spread as a function of location. - -> Note that if you are to rescale the y-axis when using the `stat_summary()` function, you should use the `coord_cartesian(ylim = c( .. , .. ))` function instead of the `ylim()` function. The latter will mask the values above its maximum range from the `stat_summary()` function, the former will not. - -The singer dataset does not seem to exhibit any dependence between a voice part's spread and its median value. - -Next, we'll look at an example of a dataset that *does* exhibit a dependence between spread and fitted values. - -## Example: the `iris` dataset - -R has a built-in dataset called `iris` that provide measurements of sepal and petal dimensions for three different species of the iris family. In this next example, we will plot the spreads of the `Petal.Length` residuals (after removing their group median values) to their group medians. - - -::: {.cell hash='sl_plot_cache/html/unnamed-chunk-4_c31935faa3125f3844ba51b516baafae'} - -```{.r .cell-code} -# Create two new columns: group median and group residuals - df1 <- iris %>% - group_by(Species) %>% - mutate( Median = median(Petal.Length), - Residuals = sqrt(abs( Petal.Length - Median))) - -# Generate the s-l plot - ggplot(df1, aes(x = Median, y = Residuals)) + - geom_jitter(alpha = 0.4, width = 0.05, height = 0) + - stat_summary(fun = median, geom = "line", col = "red") + - ylab(expression(sqrt( abs(" Residuals ")))) + - geom_text(aes(x = Median, y = 1.3, label = Species)) -``` - -::: {.cell-output-display} -![](sl_plot_files/figure-html/unnamed-chunk-4-1.png){width=336} -::: -::: - - -A monotonic spread is apparent in this dataset too, i.e. as the median length of the Petal increases, so does the spread. - -## How can we stabilize spreads in a dataset? - -A technique used to help reduce or eliminate monotonic variations in the spreads as a function of fitted values is to **re-express** the original values. Re-expression, which involves transforming values via a pwoer transformation, will be covered in the next chapter. However, in the next section, we learn of a variation of the s-l plot that can identify a power transformation that can help stabilize spread. - - -### Variations of the S-L plot - -Another version of the S-L plot (and one that seems to be more mainstream) pits the log of the inter-quartile spread vs the log of the median. This approach only works for positive values (this may require that values be adjusted so that the minimum value be no less than or equal to 0). - -This approach is appealing in that the slope of the best fit line can be used to come up with a power transformation (a topic covered in next week's lecture) via **power = 1 - slope**. - -This variant of the s-l plot can be computed in R as follows (we will use the food web data as an example). - - -::: {.cell hash='sl_plot_cache/html/unnamed-chunk-5_e930bbfdb7e1af934707bcd46bff54b4'} - -```{.r .cell-code} -sl <- iris %>% - group_by(Species) %>% - summarise (level = log(median(Petal.Length)), - IQR = IQR(Petal.Length), # Computes the interquartile range - spread = log(IQR)) - -ggplot(sl, aes(x = level, y = spread)) + geom_point() + - stat_smooth(method = MASS::rlm, se = FALSE) + - xlab("Median (log)") + ylab("Spread (log)") + - geom_text(aes(x = level, y = spread, label = Species), cex=2.5) -``` - -::: {.cell-output-display} -![](sl_plot_files/figure-html/unnamed-chunk-5-1.png){width=268.8} -::: -::: - - -Note how this plot differs from our earlier s-l plot in that we are only displaying each batch's median spread value and we are *fitting* a straight line to the medians instead of *connecting* them. - -The slope suggests a monotonic increase in spread vs location. We can extract the slope value from a regression model. Here, we'll adopt a robust bivariate model (bivariate analysis is covered later in this course). - - -::: {.cell hash='sl_plot_cache/html/unnamed-chunk-6_6d3fd12613d9bfbd45d59b658e228128'} - -```{.r .cell-code} -coefficients(MASS::rlm(spread ~ level, sl)) -``` - -::: {.cell-output .cell-output-stdout} -``` -(Intercept) level - -2.204242 1.143365 -``` -::: -::: - - -The slope is the second coefficient in the above output. The computed slope value is `1.14`. This suggests a power transformation of `1 - 1.14` (or about `-0.14`). You will learn in the next chapter that as a power transformation value approaches `0`, when can opt to use the `log` transformation instead. We'll try this next. - - -::: {.cell hash='sl_plot_cache/html/unnamed-chunk-7_2eb9368a33f85e5ca3bb37b49231d052'} - -```{.r .cell-code} -# Create two new columns: group median and group residuals - df1 <- iris %>% - group_by(Species) %>% - mutate( log.length = log(Petal.Length), - Median = median(log.length), - Residuals = sqrt(abs( log.length - Median))) - -# Generate the s-l plot - ggplot(df1, aes(x = Median, y = Residuals)) + - geom_jitter(alpha = 0.4, width = 0.05, height = 0) + - stat_summary(fun = median, geom = "line", col = "red") + - ylab(expression(sqrt( abs(" Residuals ")))) + - geom_text(aes(x = Median, y = 1.3, label = Species)) -``` - -::: {.cell-output-display} -![](sl_plot_files/figure-html/unnamed-chunk-7-1.png){width=336} -::: -::: - - -Applying a log transformation to the petal length values seems to have helped stabilize the spread given that the connected lines are close to flat. However, there is a very slight upward slope--though probably insignificant. Would applying a power transformation of `-0.14` have helped? We will revisit this dataset in the next chapter. - - diff --git a/sl_plot_files/execute-results/html.json b/sl_plot_files/execute-results/html.json deleted file mode 100644 index 41ec2c23..00000000 --- a/sl_plot_files/execute-results/html.json +++ /dev/null @@ -1,18 +0,0 @@ -{ - "hash": "47c94f236970986146f503c5c234e361", - "result": { - "markdown": "---\noutput: html_document\neditor_options: \n chunk_output_type: console\n---\n\n# Spread-level plots\n\n\n\n::: {.cell hash='sl_plot_cache/html/unnamed-chunk-1_9d27599af8b18542bf589d5de9a52edf'}\n\n:::\n\n::: {.cell hash='sl_plot_cache/html/unnamed-chunk-2_ddef71e58918eb94c9077c76bf467040'}\n::: {.cell-output-display}\n`````{=html}\n\n \n \n \n \n \n\n \n \n \n\n
dplyr
1.1.4
\n\n`````\n:::\n:::\n\n\n\n## Introduction\n\nSome batches of data may show a systematic change in spread vs. location. In other words, the variability in each batch may be dependent on that batches median value. Such dependency is often undesirable (e.g. in an ANOVA for instance) and preferably removed in an analysis. A plot well suited for visualizing this dependency is the **spread-level** plot, **s-l** (or **spread-location** plot as Cleveland calls it).\n\n## Constructing the s-l plot\n\nThe s-l plot compares a measure of the spread's residual to the location (usually the median) for each batch of data. The spread is usually distilled down to its residual (what remains after subtracting each batch value by the batch median) then it's transformed by taking the square root of its absolute value. The following block walks you through the steps needed to create an s-l plot.\n\n\n::: {.cell hash='sl_plot_cache/html/unnamed-chunk-3_9187cec471b10956d63ffc9a30e6f07a'}\n\n```{.r .cell-code}\nlibrary(dplyr)\nlibrary(ggplot2)\n\nsinger <- lattice::singer\nres.sq <- singer %>% group_by(voice.part) %>% \n mutate(Median = median(height),\n Residual = sqrt(abs(height - Median)))\n\nggplot(res.sq, aes(x=Median, y=Residual)) + \n geom_jitter(alpha=0.4,width=0.2) +\n stat_summary(fun = median, geom = \"line\", col = \"red\") +\n ylab(expression(sqrt(abs(\" Residuals \")))) +\n geom_text(aes(x = Median, y = 3.3, label = voice.part))\n```\n\n::: {.cell-output-display}\n![](sl_plot_files/figure-html/unnamed-chunk-3-1.png){width=480}\n:::\n:::\n\n\nThe red line in the plot helps identify the type of relationship between spread and location. If the line increases monotonically upward, there is an increasing spread as a function of increasing location; if the line decreases monotonically downward, there is a decreasing spread as a function of increasing location; and if line is neither increasing nor decreasing monotonically, there is no change in spread as a function of location.\n\n> Note that if you are to rescale the y-axis when using the `stat_summary()` function, you should use the `coord_cartesian(ylim = c( .. , .. ))` function instead of the `ylim()` function. The latter will mask the values above its maximum range from the `stat_summary()` function, the former will not.\n\nThe singer dataset does not seem to exhibit any dependence between a voice part's spread and its median value.\n\nNext, we'll look at an example of a dataset that *does* exhibit a dependence between spread and fitted values.\n\n## R's built in `iris` dataset\n\nR has a built-in dataset called `iris` that provide measurements of sepal and petal dimensions for three different species of the iris family. In this next example, we will plot the spreads of the `Petal.Length` residuals (after removing their group median values) to their group medians.\n\n\n::: {.cell hash='sl_plot_cache/html/unnamed-chunk-4_c31935faa3125f3844ba51b516baafae'}\n\n```{.r .cell-code}\n# Create two new columns: group median and group residuals\n df1 <- iris %>%\n group_by(Species) %>%\n mutate( Median = median(Petal.Length),\n Residuals = sqrt(abs( Petal.Length - Median))) \n\n# Generate the s-l plot \n ggplot(df1, aes(x = Median, y = Residuals)) + \n geom_jitter(alpha = 0.4, width = 0.05, height = 0) +\n stat_summary(fun = median, geom = \"line\", col = \"red\") +\n ylab(expression(sqrt( abs(\" Residuals \")))) +\n geom_text(aes(x = Median, y = 1.3, label = Species))\n```\n\n::: {.cell-output-display}\n![](sl_plot_files/figure-html/unnamed-chunk-4-1.png){width=336}\n:::\n:::\n\n\nA monotonic spread is apparent in this dataset too, i.e. as the median length of the Petal increases, so does the spread.\n\n## How can we stabilize spreads in a dataset?\n\nA technique used to help reduce or eliminate monotonic variations in the spreads as a function of fitted values is to **re-express** the original values. Re-expression, which involves transforming values via a pwoer transformation, will be covered in the next chapter. However, in the next section, we learn of a variation of the s-l plot that can identify a power transformation that can help stabilize spread. \n\n\n### Variations of the S-L plot\n\nAnother version of the S-L plot (and one that seems to be more mainstream) pits the log of the inter-quartile spread vs the log of the median. This approach only works for positive values (this may require that values be adjusted so that the minimum value be no less than or equal to 0). \n\nThis approach is appealing in that the slope of the best fit line can be used to come up with a power transformation (a topic covered in next week's lecture) via **power = 1 - slope**.\n\nThis variant of the s-l plot can be computed in R as follows (we will use the food web data as an example).\n\n\n::: {.cell hash='sl_plot_cache/html/unnamed-chunk-5_e930bbfdb7e1af934707bcd46bff54b4'}\n\n```{.r .cell-code}\nsl <- iris %>%\n group_by(Species) %>%\n summarise (level = log(median(Petal.Length)),\n IQR = IQR(Petal.Length), # Computes the interquartile range\n spread = log(IQR))\n\nggplot(sl, aes(x = level, y = spread)) + geom_point() + \n stat_smooth(method = MASS::rlm, se = FALSE) +\n xlab(\"Median (log)\") + ylab(\"Spread (log)\") +\n geom_text(aes(x = level, y = spread, label = Species), cex=2.5)\n```\n\n::: {.cell-output-display}\n![](sl_plot_files/figure-html/unnamed-chunk-5-1.png){width=268.8}\n:::\n:::\n\n\nNote how this plot differs from our earlier s-l plot in that we are only displaying each batch's median spread value and we are *fitting* a straight line to the medians instead of *connecting* them.\n\nThe slope suggests a monotonic increase in spread vs location. We can extract the slope value from a regression model. Here, we'll adopt a robust bivariate model (bivariate analysis is covered later in this course).\n\n\n::: {.cell hash='sl_plot_cache/html/unnamed-chunk-6_6d3fd12613d9bfbd45d59b658e228128'}\n\n```{.r .cell-code}\ncoefficients(MASS::rlm(spread ~ level, sl))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n(Intercept) level \n -2.204242 1.143365 \n```\n:::\n:::\n\n\nThe slope is the second coefficient in the above output. The computed slope value is `1.14`. This suggests a power transformation of `1 - 1.14` (or about `-0.14`). You will learn in the next chapter that as a power transformation value approaches `0`, when can opt to use the `log` transformation instead. We'll try this next.\n\n\n::: {.cell hash='sl_plot_cache/html/unnamed-chunk-7_2eb9368a33f85e5ca3bb37b49231d052'}\n\n```{.r .cell-code}\n# Create two new columns: group median and group residuals\n df1 <- iris %>%\n group_by(Species) %>%\n mutate( log.length = log(Petal.Length),\n Median = median(log.length),\n Residuals = sqrt(abs( log.length - Median))) \n\n# Generate the s-l plot \n ggplot(df1, aes(x = Median, y = Residuals)) + \n geom_jitter(alpha = 0.4, width = 0.05, height = 0) +\n stat_summary(fun = median, geom = \"line\", col = \"red\") +\n ylab(expression(sqrt( abs(\" Residuals \")))) +\n geom_text(aes(x = Median, y = 1.3, label = Species))\n```\n\n::: {.cell-output-display}\n![](sl_plot_files/figure-html/unnamed-chunk-7-1.png){width=336}\n:::\n:::\n\n\nApplying a log transformation to the petal length values seems to have helped stabilize the spread given that the connected lines are close to flat. However, there is a very slight upward slope--though probably insignificant. Would applying a power transformation of `-0.14` have helped? We will revisit this dataset in the next chapter.\n\n", - "supporting": [], - "filters": [ - "rmarkdown/pagebreak.lua" - ], - "includes": { - "include-in-header": [ - "\r\n\r\n" - ] - }, - "engineDependencies": {}, - "preserve": {}, - "postProcess": true - } -} \ No newline at end of file diff --git a/univariate_plots_files/figure-html/unnamed-chunk-16-1.png b/univariate_plots_files/figure-html/unnamed-chunk-16-1.png new file mode 100644 index 0000000000000000000000000000000000000000..db3b5ea4ea737a6fb485c80fa343dfa69b184094 GIT binary patch literal 6301 zcmeHMdo+~m{-4GeB)ODP<65cgO(+aTnUq`QlAUYF*cf6A<$iBcD4BFhDYs&mHp)Z| zG8j$nB-t4EEtgyd4dpUp%z59bbL?||Yp->FYn?xS>$mnh&-*U#^L)SG=lOoVm*@Mu zuAR0r6Wfg341qwzPM9121c3-(A&^a%gav?}wR@~1z>Cpo3tJQ56#_v+AUFsb4M79X zR0xiurKJUQfgRw5L!(pCI2;-WJSphZeoOEoSXz=S2?R?5@GP_>H99#t;rLQ;Xb8Xn zl7m+&@WZ77PYRCGkE8GaHjs%xB9ICRq((yF7zq$W02B0k3{aKhSs-9z O@nHJ!ie3ALm&m_1dtbm36~3&*mWPQnyO3AOy7&D&QmezqoH%32Gh` zc^9~2*P{{lUAZp~ws^jP6T9ShJu<@1s`_6fq*SiiVgL1iu0Q%4`VE&l*61Y~;=iRDziJdf_HUhn8l8OEsO6Th}_U=u~( z2czuFqn_kdl~9*mLpV*O12<_d+QN8OZF}(|x9Z!meMf4mWEHLAFn!gl`5jBlXKPBr zL_y~yAAIYf^FNTM;J!7wi@Whi#@G(Cu92iqs=ho|h@X`xQOvY5`DS8V|AG9d>oB;r zs;VF=N-kD2#y^xDwCrVmhGyF>vKN1c@kaRZn>6`nGh~dwxF|D++bq z`73SVfE+NJ1fw}vlJO=lDOtcnbmEB-wgZ063YtOXy}DObUjQ}eb&^v0PA0{8qor?g znyaP_-9t|6AW!Zi+vw{~w3}o`C^CmeM{46MJmg>qKO?Ma=LsxbAPB{c4R|e|F()-= zx4*MJtJx;33FV|%vUBSmWo==#KBW#zEIoeE1{2n~blwK|v#e!-T@}qS!PX*Rltc1@ z-FIG}qBOBn+r9zb0T+R`cXt;%4G{jR zO62GSy0C~CG#O0az-?d9gC;sib=ulw*MvmKLLkD!ydSHuCT$! zk@^#_$wQQ)fW+4V0Dg2P|7E8ClTK!AM$BR^H80H3ncaD__u`gfp`sKea@y2Ba^CF4 z)>Cfph6Xg;)_XZ3YK+S?`zIMR_IO(&Jw9t;!Xs$(L`^1)@)=+$16h>G+;e>>d4D(F zB(r{A@y=};V#pfH0s}P*Msc|M(qTxqEN!_uW5_TLLlkiY@=Ca1=*sk~8g(&#w%fX| z^2%sBAzF_c)4_%9!va}i6v23w8@}|eOmyC$_t#MFQdFr%Nx?(J057`k1J3CF#m*vlB!4zt-!&}dp?1C z`mh6c$}^w(V$y|v0^2gTpB%|w%mMP~u=Hwe3f;Lq+J?)bWge&*&LHGJDX!Ssy@rqc zE~Z^eU%gEs8$$iotQ(H|=Ac`g4YuS*afiYm^{^nX@*`0_t%@Yz) zw*b>%VAG}OjkoeDc+`AKX{kgGbv-QEnzNT|zYDZtn1FG;3LqQnq5D6>z5*@PgP z9L2)LL~qjSg(QNqJ!B3-pjtkT<@nmzbaAF-PPK3m0)_*i7GbVn0)}H_WHSg%;d zzRjkgiL@<9#4HuQm^b$~{}Mw_E#wjNKzAu1b?2thzrYXz;4I;J5rmDU6)7-SQDtVb z#T~q}RFrqfJ^byjyD~Z^jV^yPMxjt>c;Sw!wPsS+qM;)UoLY%ou`@+Mxm;5O*j#G; z$bV22NN{-_@vv`(0@DA6oH?RAZ?&{tL=6tA6AoV*t%)^|Qy>*b2dxS~lP`fQClQaF zOx%hIJ(6UOeFZwnRW~f=m!fREbbAbE^x2fOq)5>z;ns)lBQlJJDJ?8!`#nRlgRwGM z{TrGgk_}#V_b)VE+QBDUyO2hAu1niRG%*4Z{X{d>s2x%!Yw`!F$tx;Vuu&aH2~efa zhZ`?=MXv<9Aj~A=`7_VBvpWk10*-V)X|2$#mOfn9S`vPA`5(xABC@$5f91Z`Pw2`v===0_aXAmVw` z3zV@&gYlQ!ntR#TcI3HtVDGDm;Fk(?Gn*tgIfGCPBbYWeF6(XH+YCQhkRbfY!wYQD zZ9N&^_XVFXO10mE;C9U5yCEg=6VT%?2RPjSgF)XZmMfFZ`Roy?^qDP@P`}OKLe`+N z{%>MWVPEj0geAIiPUCuMz^(C_u%TKQh%5f})>!nbws0IZQ(1YD| zol8g_ddv6te^Cku$iT5-!nLe9c!qof#KvcL($ZgCq}CaZ+?Z@i-OC2xhP$-x>sN+>U?ML%NTB6 zoi13|Q_%d7j1~*^8p&y3+Q~kxDkb3v=w5x*o3sbV!C3BTp|~2vjObKDr~Vvs z{N8Pu6;nQ(i5!JHEsL7?2f zyXG4C@3FVG_PA6gMu9m%gL_5Hvpxq@jt5)cqCJq{DqCEO-CYkL4M(jXW`xgtWoE5e zxSi=7(_3R&-j?xPY(RH=1Q>g}o60I{Yip~aSIe6#oXH{rQF1vn-}nS0`Y}~?}-yHPABoNl1ZAG!m% zUQ^~h*~bTn`E*eqM^GW*RzYnwBoc{$O+b+dF)=YwXwW9H(>6d9P zN9nnb9=RJ~)q$11|9>jxv^X<5H-`q}qmb+{UEG1ModD1W6n|6=6hG*{0Q?WVB3SzS zM+2A0&dVH;B9zY#AaXV{eJbS^KioS-I2(u|b_s#;Vg?-jGsF{x4943Uk^?sSb&0df zA1FZlv&}^L-8v9{coApQG#oJV8r1W(Tv#_m8>lh{VciG=Bt*XKv@U}%`~Y@ zzMbXU6HucYaZ4u%SVT_oQ*PL%B7GSA{chmkuP=cCd-rFSC8r1Y&2X1R`6uMhWQh(& zx>s&#vN=`?u^TB{Y9Wk|N9+T>Y}7XsUxjaHLD?ZWQ2s#~_+C;dgo=psn~2c_Wr|V$A&HsIKa3hX%Il_hq}ByV$F{7+S>QPU=@E6d%N` z_ffL^GRtzW!|h#l^Qkh0FNRMcf_idh{kJrkU23Dc`pWq`I6selTA$wW^J;!l57u-P>X+b&?R>n$ zVg-SpuTSipfA6@Sh0OA`ND{`|dwfBwj435{l+&*NxRbFG!I@KRx%h>rd}qp!+$i5Q zg$tf4I~MZm!CljeSz0NzKFgX+m7gD9AWGZmkOw>CwU#|htgOWE4~iPpAG8%yo9<%S z?vYlPU__`Ecw*x_(;{C+HYk|L&0);jhf*4K-%JRI_Qqw4;U!*qK0%(B(Ls|%i=Gw` z2d(2K%@j?xPr6(XMNPVjqnTRi3e!6=qEKL{M#If!uRun0p7Fr8@RM$jf@*0?AJ^;d z&t>e5pQNdiLHo=K3eIk|GcNAT7nU<=UGHl=5c&9pgVnVG_iDao!EFk#?BkCRjD>)S zSzC{2Bt4}(?(0iv<+srswcp$BI;C*B+E-lPPU?=gc3f?Y`+_SQ?x;+XaRkiMKcCW$ z6vtfGJFSF~os`u5uK@H*ni{tg4T6u^Ydia*?zleG7{`%wrE^bI&r{D~` z<^FAGWzSP#apsz|oi=%-cBRxh;A*UdUn`G<5l0kWpqxCw0cqiTiDKR|&F#ei9Gmbk zFxdYqH|0h2;+(zBc8!5m)Y-9L6KJSAqt@52x40Qs9&VFhBrH5td7eUX#Z=pGcgS_k z#tGxK^r?0sI&69nQ@P#j+!vats5w8SM4g@8HNxc z`YU@Ak9^c|RDn_M+g2tGQ&Ew7?W^{{B_$ZRiz{bCgjsdNGIbdpDC>hT$|JeB$dH$_ mkt}iV{gy`mJ$Syu%oD$r+>D{Hw6wr~Gn_E7GJbvxd-?C-_6&*u literal 0 HcmV?d00001 diff --git a/univariate_plots_files/figure-html/unnamed-chunk-30-1.png b/univariate_plots_files/figure-html/unnamed-chunk-30-1.png new file mode 100644 index 0000000000000000000000000000000000000000..1897edc7d9cb855d183a89d96b49b53ead293e97 GIT binary patch literal 3037 zcmds3Yfuwc6kY;KcmzaRUqquKLmU*fwuKY|R#8L?xYSBPLa5^wru^IB4qE&#v;Xf%LEt{}jK z$UTi5Opr#}po&S-G*U=F#e_&9KpFrtX&^|F1jGa&CJh2fMg@^uf>41p706UUq=0WR z6`>-C*4EaZo*vShqzM&7kmx&Kf*_pxkNieP;lN)XBLIN8*>9(fv}a&D05}q1AzyD! zk(qRfB9ETgN5P{HFHid^b=R6*tpyLos|E>z>lN^4GF?=fQy}-UplO*4`)!(wiZ)g( z2~c9dC7~e$07|IzO&j%xV=4BJru&~SKx}T>xm@w$uUZP(?sk||YD=O%UK50Q!pvT3 zFSSlUMV&uzV=oQebGT{X3KW1<1N5{<2%BA3b~|#LBtfz%FdJ!3_+K0KPmrqKkbs1X zk#PCEFZfMKgwUW)&@Z-#x4r^xu{UuIC1#yj^Z9KxLu+N;HO>nTrBoKAo&N<{I-lR> zK=*M#DU`}$r2OQ21|k>mo#u6g*-1{@CD}l25&G}L^fRWxrpW`Kl~c{bTa;TdqPZbh zX}^KYOyu`qs&o!)BHE-BKU`~uq9~P!h0J#unDwp(diG>S^sl@j#WZ;10{*o{d?zX@ zq||SqR31hWy(bTlt>Blj8eN_l-IGc~X=nv-BLJIX8`k5%R`yxE`H=k+C6RWxKGk!_?0czifKj4o!oIND(xE2 zz+Ya^M6G?MH=G|NqD;IisS+<{Nvwm1FjLIDriJ-X8dhu0nrX;j8b-`Y-2<=jGQ-pB zf%wpD#zR&e-EWUk$UQf-q8N;y8=Zmg_U0Fwdy*9V=ysC=R*E}NQ&cjIH$y-#EyrtP z7*B3>Ki+5B-c|?Bf~|Q*U1yV|vctqJ86QTay|NMQ{m{bx&PL0S)i*fZI*`m>eQ)2* zJJQ!>hFPgaZ%>Bnu5-8P<8?uv8ku#vxg(mJrHik@IT^%IC&MLrByWg)P0+|{N8`P+ zSyR#ypH78gSt)ic3G$iR)BOSW8*<8ZA-1l15+`B z|7Qb7Cu{{q;)aIv+&8}l;b=7co}rwMC4s^N4h-%s-nxv!PQosU5c`{*M)t7khqne$ zFgtqC{QdoP=u;kp8kfT4XGdn`r`d>>_Kxzysc27HGH%ndvqOfL%ZiYr_7v>Cf}`+1 z*VUW99#W=ctJ5uV>~*H~f@vjN9-*(Phtm8kt@?U_YP?@c5%ozj&X~CZxh!}Z+z;y8 zBdjZq`M7fClFYG8`a+BEZkPerYTH~V);-eEHG!I2yU5Vh$Xxk_=r!D{=pYN`FXKn^ zb~wLt5b?HFT2JPhk#K92u|WPKbvDfS-Q4X?MZfJnefPx0fPuQdwu%6*Qd(5rH0}JXqFzj*v z&O{K5bIV;b2i;-smt%#omYC8kT>hQh>XH6B-Sl?H3>?>h!KzQij^a+LL zROb$fa!-i<2*REcZ0&o=la39LSHfuK)U*;?N|h`Lx7P`EgKSe4{@0&$j4`tR(KF`+ Sd-5v`0AXt*LjG8taO58h3A+*i literal 0 HcmV?d00001 diff --git a/univariate_plots_files/figure-html/unnamed-chunk-31-1.png b/univariate_plots_files/figure-html/unnamed-chunk-31-1.png new file mode 100644 index 0000000000000000000000000000000000000000..17dc0095a3648a41d824763db5a66f291b7bf1e4 GIT binary patch literal 2824 zcmeHJYfKYa6dno)zCbhzDpD1JC~i^kfrHp}t*N|xAc9B{*GCBvr?n_gc~myCEK-WB zB0_CM)ZhRW(RT1f)nzG9jVKGWg^EKPD6|WRSf$Kf{+MjC*)`eh#vh)1GiUBO-}xr@ zB=_cI?%YnFIc>o-2!dw%Y@-E2keLd6t1V5z+b?FCKXCX?|DdhFLl6u>Ob7 zli@rW!G|F}6XpXtU(A;iC=!735LAYvI3Z?2VkRu+12DzF}V$an!V9wNgD89~VT zuw2XpVY!@;69kSTxQvI(P#gz&LaWsR2~a?QI>5kD0tZEt8lV)=34%zeRXzc`oXXx7 z8UsO#GA19BoZg`$AlBeR+Z+^MG^hxR3k#W>w(I!xs9l!Fpe;V!3x17@{Fj^TrcBWs z1S08&{lrDeN(a0uzpdlah*LtJ9eR|Uyonz803+GG?0IeqyqEb2ft{L*4kk$*`nfLbQmf=#DPwT#r#VG`#zenZceg&UsW3Sudiy; zDZ1XA{Kj5us@Ge)BM(w0y40+E;pO(GyY~gBD(~&P++MHqZKG^|G$KmRcE2`6imObt z5p6V#Ua=_cIZ<8BiJ;bWHAx6gd%_A#Suf15xUf*-8hU^H@N)Lr@*H&)n*Y@P`Ihj@ z6iJA#v{`}4>kY&8J49_>8{YNn8O}!|8+TQldrgWv&PgtRl%mTR?zANXZbfsnV({>2 z>+e@bg=msI$I7dfI|%678;iMU-}uC}Bs`d!Nqt|ZZt%Wu9HD2}_o-rIhd&t9ErV~d zxZ6nujPRQH6mX1-6*mUpqz~w^;Sjf;LR_fdlx2TKDTrQ_q|%A-6Nbyy^Kafuw$@=0 zwO)umYJELf-I<&wA!+Jf>wH^6a&A0jEPHCM>mOF9S6ct-DV%D_(3VRDhU4*)bJ|Yp znB23rSeCWObnInF;kr)gqL1`5EDN3DH(G2k$B0qbd%}y#SY5%A;}sn<S{js&{$+2e&{ ztbvSbsvU)`@gut{Bo8@m)X>yB1Kq_H%2c|*m0OrS=q=XV%9gv1UF&wfee#j<#y-ij zL-f=dH+Ia>vr&EeN3Q7cF=cqQ8#SD`{$MplkY+SU_|3d-&$lb>&AE=v=-B%3 zFk`RQA<$TAg<6Y)zX7qg9{L+=g+ zaUIj8x$5RR?VX1s%82o1#}ymQcxwt-nT!N$-bxbv!mF7Ib>k9Im#t@@rG2Q5G*&&P zk^zN|jm3}R#e1V`Y%Id3+DGm8mY@3JgHAs$OHWQ*z~f4DHO+dmNT=*FzEM&;Pgi{I ey!20f(h}MXF~wccUo|<=`fS}!tN8A~=|2FCH%KJ_ literal 0 HcmV?d00001 diff --git a/univariate_plots_files/figure-html/unnamed-chunk-32-1.png b/univariate_plots_files/figure-html/unnamed-chunk-32-1.png new file mode 100644 index 0000000000000000000000000000000000000000..17dc0095a3648a41d824763db5a66f291b7bf1e4 GIT binary patch literal 2824 zcmeHJYfKYa6dno)zCbhzDpD1JC~i^kfrHp}t*N|xAc9B{*GCBvr?n_gc~myCEK-WB zB0_CM)ZhRW(RT1f)nzG9jVKGWg^EKPD6|WRSf$Kf{+MjC*)`eh#vh)1GiUBO-}xr@ zB=_cI?%YnFIc>o-2!dw%Y@-E2keLd6t1V5z+b?FCKXCX?|DdhFLl6u>Ob7 zli@rW!G|F}6XpXtU(A;iC=!735LAYvI3Z?2VkRu+12DzF}V$an!V9wNgD89~VT zuw2XpVY!@;69kSTxQvI(P#gz&LaWsR2~a?QI>5kD0tZEt8lV)=34%zeRXzc`oXXx7 z8UsO#GA19BoZg`$AlBeR+Z+^MG^hxR3k#W>w(I!xs9l!Fpe;V!3x17@{Fj^TrcBWs z1S08&{lrDeN(a0uzpdlah*LtJ9eR|Uyonz803+GG?0IeqyqEb2ft{L*4kk$*`nfLbQmf=#DPwT#r#VG`#zenZceg&UsW3Sudiy; zDZ1XA{Kj5us@Ge)BM(w0y40+E;pO(GyY~gBD(~&P++MHqZKG^|G$KmRcE2`6imObt z5p6V#Ua=_cIZ<8BiJ;bWHAx6gd%_A#Suf15xUf*-8hU^H@N)Lr@*H&)n*Y@P`Ihj@ z6iJA#v{`}4>kY&8J49_>8{YNn8O}!|8+TQldrgWv&PgtRl%mTR?zANXZbfsnV({>2 z>+e@bg=msI$I7dfI|%678;iMU-}uC}Bs`d!Nqt|ZZt%Wu9HD2}_o-rIhd&t9ErV~d zxZ6nujPRQH6mX1-6*mUpqz~w^;Sjf;LR_fdlx2TKDTrQ_q|%A-6Nbyy^Kafuw$@=0 zwO)umYJELf-I<&wA!+Jf>wH^6a&A0jEPHCM>mOF9S6ct-DV%D_(3VRDhU4*)bJ|Yp znB23rSeCWObnInF;kr)gqL1`5EDN3DH(G2k$B0qbd%}y#SY5%A;}sn<S{js&{$+2e&{ ztbvSbsvU)`@gut{Bo8@m)X>yB1Kq_H%2c|*m0OrS=q=XV%9gv1UF&wfee#j<#y-ij zL-f=dH+Ia>vr&EeN3Q7cF=cqQ8#SD`{$MplkY+SU_|3d-&$lb>&AE=v=-B%3 zFk`RQA<$TAg<6Y)zX7qg9{L+=g+ zaUIj8x$5RR?VX1s%82o1#}ymQcxwt-nT!N$-bxbv!mF7Ib>k9Im#t@@rG2Q5G*&&P zk^zN|jm3}R#e1V`Y%Id3+DGm8mY@3JgHAs$OHWQ*z~f4DHO+dmNT=*FzEM&;Pgi{I ey!20f(h}MXF~wccUo|<=`fS}!tN8A~=|2FCH%KJ_ literal 0 HcmV?d00001 diff --git a/univariate_plots_files/figure-html/unnamed-chunk-39-1.png b/univariate_plots_files/figure-html/unnamed-chunk-39-1.png new file mode 100644 index 0000000000000000000000000000000000000000..004fb2b0f760ba78943d9e4e523bf80e50191f74 GIT binary patch literal 6181 zcmd5=3p|wD+Miyd8n%>#?YN~863QhR$xGwjFrjvlrqGz8QHUMN_hw5s)3`)oco7v% z7ngC|vJacaeUQW?-_FRmCzsskyfdBsJI?v`Iltf8=iBG|);u%6S!+G(S!+G(x%}6< zL3FZ}l2DXDp-@uxc6b*Q3IK)Q^=2r>>u7IM?cWR!4(u+WhY zna(1!xMY?98AGMgsI+`4jZMwx(GU?-gph`O8kQ7|SK(I4i#-LW7PN;yXOU2|t(@-zx17i*8Vbo)MSj3FJl+1BgYDMtHTD1L$Y|Oo<8UIzSjCruv8qju%18=%w=^teOX*KaYupAI&w8JgwqV_wD zl-oNY4#&p_^TW06+Z@%5jJ`bvWM*(Nkm0`k+1f6837lf(xtbcKUmbjQO!|2`Z48Om_G;1+H!G zy|TOXV=JoLi7-S4ji&47&TPBD8msVt3+sbET7>n*gq`uzISrN|8W!|$=b zVTr%b#(yuV&H%$dz-cLD?;n?s0L-=B31AJy3hrRo0ZfVRTj0YQiVM7qRKDqs0RvQQ z5&-25Sk5rre0^f@-Y=2+Hfwc5%Y}8I&Vkvj9OkqBw)@BObx@k_D0PeD9tpEO$MnHU91DV=XY|}|1U~Kti&h0aBir1 z@KDi(i5#^1rUFgq+M%tSTUw2Eu9zZ4AANwaA=?T*R5Z!myT9iK_2qCSDEaJ~I+WCu z8iOznIZa!Kg%>dTW{<(OUEc9v<7tbVt>Ss5>S<_q7ubWOS^l*7 z@nV=hvDa8zgY)_RCcaO(qBTjU{gZU|wb{HsLjCseav@2B<4}7C%wBQsFP6-wuZSy3 z?I91ItlW%vkHnBCyllGcEI_v#y~Hob@oSGqE@;x_WF#MuAg7o%X16szT|#y}!Dd#M zv#V@5WL%Ef`6%z+fm3DVQQGJ+c-eZz4o;6x-b7g{xrN4c(;EC+{M+1P^KP2T=K9r* zv)=&A^AoY9)4h}W7MDG@akSz=8On*ez6U`xJggfuUmhLbnNzHIcuSDh!LHlAak}C? z#veahFi8v4CH=bN_qprr)tr$)&H&fdMaZcJcsk%RCc2tEF|r#8HmuE*t_UT0pf>zt z9$Mo1_H7;*qbo(TUtM2)S4)2bs4sL#{-0c7#XIQ}>Yyfeqzhne|4bI#l z+y$S|y1NWA9KO9q2O@q(@XwSlhO>&BwtnzMOQ;e2C zvJDrL7;IU0oJ3mu6vdnE-!9UEuJ}zs(TVh$?j}{tYu5rMIO$wfmHu|B@DHu2^V^^> z2bLV$c$NM{*^4KMRj*KXvrZAef3Rkh2 z(t3}?Q*NE}$aX%BwoZs+q8)H>q4%e9T;@)#l-r16Cg1#I@3Y`$bJXbDZWkEi8|-pf z_}2km3OZ%|o;mVhLAboTplgOrr>1L7Ry{ie(8%To&ig*=e&HtE{avvC)zCs~Ove7j z*6G>7*cOSif1~1vwAZWcM3l2xGHl!bvD2?Ta(w;Pyd_J?8;Fj49HEx|-A@vR#j=I- zDnF@yXppOyZuJJSA10zr13%Joal;4wC%$r&h0g?^ugBldBx}a)#ux>yF)cuh*I%1h z*iXU(j4{~5wl(Ray3ls8P<5uSV-O^pYKFLe-)mE5b9;|RR+#V3 z;?gkq`3N{s(ll@-vhvp2HcRn^T)_yE)YmDC&5+b|v1?D*`On@Ut3x0X@N}Skw=*?} z&h<&a%oXMJ>yRUpp@_@LToCoeTL#xmJWK{JYjQ=ldmnxFE637Y!t^2(R!LtUC9>a^Fm_c-8RnA2i7KNbs;VH;o`m_>711EA5;)PuoOZF;0^FAev z6FN|!FRi4&5W*4>U%7;V;!aIL=RvC{|CVj%!A*&~RnWaJM`>loV>KL1f9 zxpt;{yslqA_RMT_>gvPLB(7MueOCxgyB9W+R|Ak7aB}fg)yj@i)0KhP!PuoZSxK59YYD0vc2Kj(2*ZT?cq~J$5Lc-M385#2zEV^r6}}X z`BrrdU()9Q-&I@O$ZxKBB+EZfpE1|u{=pf^9ta34QnmgPxf9*@M82fXJGknKO?McMTKoQEl6m zP49t)Q*)~p`W32^AS1~j+k`lCNw=p0iZbOeJ6*ipp~x`hHj-yL82lt!v^`u0)Y{?{ z^`YbFn|IQ&EALXrBC$kLeLA{q?<%$Ze%FHkJkkifBW_@yA|GmHCQIJ-#VHJo1ZU>kv7fZwr2bOy-hCH?K-%B|rTuEc@P~Vd~^8w93b3 zb%{$BL-Sx&+dPW%{?W8f39`KZropb0MdIIk$|q&4ArF9 zit~g`hLFGBDQ)Oey$DrM32--mM^okPFt`PQUM=W$wK7%SxDX7>^EQaLTY0InJtbsw z{|XKNoom*wy-K`G0nZKg6mP+Y9vxDbxvr=SEm;E>Wia^IBydF?!ree;**L02#(@kx za41`YZl&^%-$(4kahDCQXNBu)PJ~Tel07FI%J8>6Mtyl!%$$%q^%{tC4$U&q#`)yP z$GE~Dic=yUpWr=vU)M36Tx0pXD{w>D%{_yYMBcX$aHMQ|8X%R;)$h+{@MpQ7(?$1{ zN}cd|#1X>zXL{0J)x=FHZ73)q{OHj2g9}_^IZ19^Ox+u9cx97s=;;!~n*9*A3WTi? zdogm?qEU}z4!Bqwey%F4-idXKW){B1Ikdv0&uiM~TucAY>;bW38M4pYFJ{V8?uD96 z;l>Wa31i&I2nFjZ%&vGwRC-qDK4Sq7AcegA(+*F08z}Ef&(9}A_R&K>4V*9dzFsU_ z^Ng{xF3Qxg+b}vm_*~d_;>uZC7Jr31CrHP?H=DV{w|8Fz4tr;vzx!0G6f|^wb7*Dw zZh(WJrUB{d`S4KgY8u(CrJ?$8*&ZH1sA{&2ihaBi&bw^j*;VtP=uJ2rxL~?$R1rVY zp$X0Uh6haaf=p1Gc@b*)t}QahuSSb=6;ppJC_Hk4dDN`2fpV_3x+Ms3E7MB^?mBKw za8!R-!#^_Fl3zB1@+%x{>nOV9tSf6uF#do!HdIEGFp4yt8;vz-BGpXwN2&3(-5Yh< zHs{Bz(eadbfa2wc-ZY)cT&~aT|5=UEreglhuCz2nC(W1kDP8gs-%rUIvC<|+7+pAt zGfO<0-ayA*Rvnjrl_U0~A^kurhjvvtHse6L;wSWzV8UK;Vdm8DtQ;+FJkfZ_NP`%W zn64CT!S=WyXYQE#{l0yd&bFvLZ@+b52mPwdKeo1Cd#iIxo}B1HE_-H;%+Th$U6vUe zys$*i5JJ3T-?0E)D6zi6!z8lg2N@Z=`z_G!(B!wr0qqXcU4E?o3?rnChGcOW%Bk6d zNtl?B#x*l@hsGPEN!tsJf|fhFYHNlVuRK2Xf0mX_t#UT;D4(q8eAwrL2@`YTSAaG?3I`>@uwY(c-4aPLCM7FBi}XlB`dmIzyqDUG_Y3r#^z8>6+%Qq zS;{&y%MwHSK9@^IhE zkrK(&(WeUv$m&dW+R8unx6{4kRP~j_#^k)=6{(2r$lM0DuvpN*;?jFVLz&aL;tl0# zUV$u+<+u}NSW#y`(-C<(2+XZ{|61Wunc&C75wJGIQRUsBP%jlxkB3ajrE6>TMq|td zCTU*&iSHr@E?qG2ej#&tJ|F)ifFNy#C@1+6pzP-QxZkYy^>AHDsjF+$$WKWDzIUQ$ zII5yvMr>Sy)5oZ3wZ+K0HR*wjUF8Db41!9m^WdU|Ag@^Sz1OeV%D?dHyZTLdMOAvV WDBjaP=(+H@-`?5@|J3T_)jtDqQuuWM literal 0 HcmV?d00001 diff --git a/univariate_plots_files/figure-html/unnamed-chunk-40-1.png b/univariate_plots_files/figure-html/unnamed-chunk-40-1.png new file mode 100644 index 0000000000000000000000000000000000000000..5c3ac58a1fdb092f22f851ba0ed420a051c51016 GIT binary patch literal 25529 zcmc$_cUaTS^C$`-VCbPYkq#mtq4%nYR28Iz8oD$QkX{2K3W7)pNEMLYLYE>$s??x# zsnR>rJDd-`-}iUE=g)he`DX5Imr!q*liq`1$=<^Qj8(i-RMLgJX+>bA=-RkLaMgbLCI^sVn|9RA7@kn!Ai?dm71Zf|d$ zy%bzw>P5D_zEB9 z$IZl_vzzcHqa`J@4lA5DrWguMqF;ft{R;&Ka})ULL%;x%1W*?dF7hohod)zx9ci7T zSfQ+lu>52fruhFs*N9NgU$y(G?_8BXsh*xtrb*kY-}2* zPohB_Kl%Q>xO<3*enU0Q!;M4CGkIn1P-f$%@$-8szwo(a)K2e~alyIu9|`6Mx$i54 z@oQW-dfWsjROgP`-@42gxo0gjRz94fdc`BS$SI@t`feE~oSPA%iA&&D6C};|u>g;r zWTdV>x~fObGvcPHnQDbe@nK9&$_ZG%^GVXuQs1h-yh6YU(>(zKPx6Rg_n!8`9v}H5 zD@cdZhtUe5)~magzT$)gVEvvaNpq(QmmKHWwI8Yty{jT3K1wU{w$AQw_SLZ6no!(^ zlb(sR&6jEqF6QhzQ8G?}CIX*tnoiS~$~C5osm_>tp8Nm2*%(#W-ZEWKyicDXOyW5@ z^5^BZi`2;JN+M6Ym<#T3O#E*v2t<=)^j5lrImzW!jM2@Fj4npoHJmV#(2GRSNAWf* zDp_CsZ(AfE3VMiF$3-WDRO2tbZd~cEv{W_g^;po)Zyi@2wO-AcM}{HAUNRQPSi~&n zU^q(!{;ZCl`-yxL@wFm4j8>JZ;Z`7*&0j}#?8ZrK`!O> z=A{zC$8}?NuK48e(!4YotDrJ8hj>AlK)`23zfqQ|;515byzg|F#$YLF3DKm1CXt!Q zcn{xfGlg`rrd zMSSE|&-cBP#~PHjNO;YkZWHQ_JZ>df!*Udkc=c?7rd@08^R=8!I59_pt>C z)zQ9vi(XDHP8pS^yMl6X?M4z{+gKFZ@n}1Hguks&sh#2xtKHUaz7%Uhfyd?FeQbN$ zb1KrL22EmTg)tkhjlbmN`NnZhlfl6NE zk&FVZ5X=w`lJ{E-hI_q8Mzfz(db^3$>qqfW&YnY#E7FFv;UzNcLSnVreMAQW&IOlE zHC%i*=*j5XU3>7s(QhQqL&QAo5$P*&H^!Wqk2}Tz^>)=BQQ7a^(=8YrdBGsvkj(V7 zyJee_<8(%G&lD^vt`v$r{dyZ&;^O_X`m*l*`p1@9s7PQ6 zf>K6+2?uNodZe^KZ78Q|89Q?&ekHvf)*HR{Yx>^H=lv?~e=e|>UXy5Hly6#Q6mn?p)QGC z{S9S890n+CR%k%NBv@IghygJ4Y6>}7s#3TWmg%f;GxMXi%gzky+QG?j(><;Ce@ zXU)Yne9&LYCou@p>*D%8U2jwrnncJ76Zmqt)p#;DIHxe0F=VoEu43!uYI>vl9QOUh zDrk|JBWE8T`i=^W66BihTDxO(RZ@b9F{c7iNpt;3e zJ6*YY%?kC{Y0vaH{)6M_*QIzi0rV>u{dvZS{q*4x5rC|xr*;G8jx_Zdf4{y<+vH^t z6G60~A2IQ}`7+M7Q`n2ZRgoW_$AX)Km509Edupg0lr$?$?2G5t+;48xQbE6E`P!EO zAEr-XXg*j*y56ubG>PUKAfsPA;=Duxdzj8Ah34mAC)IqXBQ_h zQxiM5L+g@TPz?T@6(%>f0(Y=cQSE+!{>`V1m{dgQ2V?dT*>-H`wzjWjf{~lns!s;y z!?=6Mz_~Y=MSPI% ztFZJi%u^zMgAr65vx>@lx{v%aetx;;2r*_-u4?7=LMa{EkSG&!(0r@oJ<-%>ypF5N z4-t_;{tgoOZR3_zu~~IwSlPnL9tb zo!S22>Vb;tJ++eA3L~-vB*H2&6f-vPW4^zBpSOq`9thf>r5)3A|8qXL8*~}ybD}%w z&t%B&PuypTU|f-`3lM@jZMZ?{nWTLu^+v6_3)N68gh+vYlxyi_-qeYTE7tP2@iSVy zLCn#@h-)zknCYuYdOj(SOavkFL=!I7wadYVZkS)xm>9lty0R%#CPxa0Mk4KJ;rdA<8j^WX5GEGYAAM;*YpmCm`IE)z{2BzB#Bd*66KLw!6zJ;L zenp#={J>82N;DY53Mr zN$Q`5+87FG40*;ex4*{t=N6-^Pd-o>9!>SP4$^6f1pN{ zpm`;=_cBF4^RD43C=Jifx|T{tLlff!o!QXLLyz#TvZSLEP7zZ2p%`y8JM1)mIF?`L z-dQ_4nkzBre7C2J;=ibfc%75!?~Ni?qqlA%tkst@+V{G#c;8M=BxspRMlf#xC9f4Thbj54*XYWyu?& z+THFui;oK_i!1lkp+2LySz)I6+i)>EuMX#6%;%Az0bXCD#xK?<43h#jAf`)VF=i-! zbykFfr2bl{4V(mIrKlB2m&mUGO%k^B(m34`QW6up$yd~haS@0F>3X$tKzhk6+<^T# zAWzB)TQX{NR6^{$at=+76HpRRQABhPOjr8$Z@o+TWPp&0tx4wJ7GIGXUvT6FfplLV zrVqP&+D(EXnht9CQCa!z8XEdI5KV?|KXLTukkA}i!_sP2wB`g3auH!&#t$hj<%s>N zZ=#0ZsqTX|(NIFvi7R2pxy>}lp-JNLN5xr{GV`>G2px^3Z7MARGs6myBI4KM>BekWd0-W+tL%C9anKdgRghf^WX~s|1mKZm32*wO$HrR=!O)*H|fZ~h>+)|!NPgy$_;DU6+x6<`Ie3y+`fO?o$ z;>y~etk?uVn})BYNAV_|Ju4tXxpP7I2MH7r1q@R>dLX8&Z9V3=-s&vkC3(Zb&_xpn zsHYmYuwSCf$OzDTne}#h0G&|-0rY}eil)A0fZlS7wSWM)2p2?k&jY(A{dG@(9H~~4 zcosi0{F{r54;P$EJ}g(XzTaOf3+Api+tM{M2v3YJ21AqNMUR|JZD){Wp;5Z@!u6;OZL+rU+rr+opa(X8NRBTiY)(Y5Q0D&?<&XyZ^MBzH|+M- z_?TNgzNgpu_}Rf<)uKrL(RtEbc(GOa$z;V_gK&(FaJA|Ku>SayE_h_N$w;=%V?<_; zBBD-z)U$(d_$M$M6zy_FoBKP?C;&v}?R2`H7a&T;4Va$<&Vul|_Te-)_UfmPua}J9 z@%eOW|MK2oVzbcDuHw{cnu{}}*GtF&YqSmZ$V+`FKx0TTwjWfwj(%y9F=_tp<-T|Y zite<3+ezadA~5m?pk?9;^?!YSw+jMuzjh2Swd?zFl*p`*@p9%Yx?mAsLkPm(cc&f< zocGYAr`12XbK=EW(UK-IFQ?C5ANh2<_}xPYSKp`o!3BGtUVRr9ww$UcKuXPy{uSNR zFBkp#x%a}89`b-Zucn+~Vt)I9(rSO-5&zH?nPsqpJq~D4Z5-6&{iT-_55g}%#58Gw zxOU1%@lb(LwiH^Ry;V3wv(V5Y^k=mU)R5cc%>7@NV0<5Y*I^?F z;FCQWyfk>tXL$<&7dV%C`LZ~0FHknf>nzPS4`9P^VuOC51b&aqjc>JV-bT0xH- z_C)+TJe(RFrV$ID`P_Kt>HJBW^KWVyin<3ase~FIfC;L6tbq$n(y2Nu?%0!=Xn`gT z=|Gdhj80s)NWmz=61k$C^Zptbu*s;wwwd~Ytgw>XoA4SPs9~}gpks&~wX%z);4v5n z8DY8Cr3Ln$-z(tuM2jZ$AYwBIz?(K2A#Vy3OZVul-o-=OE&X^8FY;Ip~#|F#Pv58WHXbPzN=`R9&n*#bS2ULI0 zuAriW6P!z%BS(x>8;&&sfqJS+`vKUlEU^AWrv25ijk`o$`+6DG6!DW)wU3UbfY5L` zU}*=Kr8S1dxrQO{V*E_Qms*R@Oecm(NqNGKAgL{2 z{lW4&88f-}rt$@*{kVWutbitAmF4A(72Rj6sDNWHQWuf3ca?Q=t}Be(AxK?*G0sR} zL-=kQSZd9jtk<0O2CQgV$wM30nn3XeUvmOrw1vmF(EKrX>_(;Kfz_6f?D@Dh{t~d^ zG6M)kN(1vRuu#KvJvLaGhpg{Npvw!C$Z+NAZEe6ROI?Roe#G(O(ZWO8z-d5xMxEJq zn@0q8Qo6uOKs1H=P3xq_wS(K=i{qn~Uwph~q!%zsVIP!xtA+89yd91Pv{&lxJY*$2 z-lZyR=szC0ek1;l=#gs*fLhEhw;N8Mt)oqt#?3u_>sAx*6sy7pd-BY$g%jOChvlAG zbbC(TI+Cnxg)Nl(<}N^lR1>gj5;G*$S%>C2d2qyPAfg4krD|`0ddxL83DX_5fHh}; z@P8(==+>8Dp9gy$SvD=%58muwj>D3(qU9O$kiV#8N0R}u6&{fZtSUCzyE+} z!)e*Bg`>$Ej9e_kM-q-u7Ly}wj6@PJvbj!D9I;(BiOkUrTj7$MdvzhCf@=r_uO zQTBb-cIln*B~Hp6L2u`MJ^zRgCrYxyz8PKP(NIR{6w$koEG54Z9^y5gdS!h~JGYBp zx))g4Pa1-$7!AR2I;x?V*Pe}(xRjET=Kv$F}&3jDHPrivD&aDgQ|TS4k!X)N)&45Hl-+4&NM#tHdRt2%(~u3#+0KTRP#%k4ls&_A|UxgrTluWUO@~t8zJawDB)d0Qq0-2-2 zlxV0SZPh`sN&Z{%#2N(E@N3L&@eL&5tVaWvABb;(ezgz~mr=@6Qh+Wwh$^^`0JuZ^ zbv>q1E)ynDPvtEzHx4+L#aYfc1G8l&8+k@LBKgI!r?a@kMvouBgo9jFHO3OzCLg}| zflqtJG4}+W2oT}V+g#v7NS$Fyx@fJ zB)G!<@q5g#cKBZ6mX~wqw6dm%EgSmPv+d`Q;`c7@nsD_3OoXI*p~G8(UqP)vour)?>%{x#dU1dQJe zexl-*R!$=gN$miT;{bN*I9;u8bC7$QKC=8@%4Wr zV~g;SU8Avr#X*mIhPuB}gF7H#TdtdoWVzHeA4&E(`83Qq0%)O;W)@zRfJKqv9k) za^({PvPB58!UI)?!9xZV>=2ovyBhB6Y z2a#Kd_$^QmG8fnh|J3`oc)|uIx#JRojREVIKG|1XEv6tEm5Ufeg<;$TKCgnSWNGj+ zoD~ra14EVE+PgQ`0bgU74c6bOF|4jNTQfmp7|^Ny8TB?!wo`fp%*|ARv=+JUSN!6( z5shKg|Fi+7hil{%Yi&fkH9jOj1%$Lwe1heU_%RFIxIA@*yxZH+sivf=U$w>8pZ`Xg zZ!^IE7WHA=`Wq{7ey!h@#^XzU3pFI5J}8a?C|&p2vF<};t&(u_DgHs-LohrZsh!W=emQPw*7>PG-3>kyjWZau zpEVByoXV5#3_o(Jj+{W2=}z=?NyB*J7cz)MYIrE0-qDg6bUPuc)8!IovZW7q4N3Wpo3!Lo2t&-Yc1 zY!*)Zr!VG1v=^`+CcIunbe1 zUSfTM#B4B&W@z22&&?fY>#}{p8kGN%Jk$X!K2WJCpuu^f`Phv%IW;VSxOYh@`)Vo# z%-#HH%K`_rr0SG@_;H__V&zs_Gsqvu$pHWWPSZSN0)K@~FGuV2dg1^Un(t!En**BAu8ZhQT z%!p5VW8)JfVab2MU&_bI+w>8>vvN~~Y!uq3r#%l;kj=x8+^X%m@;|biUjFzP`%4-d zml%%mFFXY%p8Fv>fBnNP-I^*TdV@9r^xm*(o{%x1HMObh7peDWO%wh{8b=jh_hi@!! zc;f+EL!l)yC(_uO%j=0R7Ihm|zBk~~O)GvQyATSlQQNz=mY*X(O1o{9$a$T=%XuWQ zb>jgp@@hsLn`3)jfc z6sPVv%JuqND?&EwsUg3CBTl=<=Wbx{UD&-&?N-t6URlI&3y`dQ>3dz{&mi5_gC&A-@wv{}kH& zkEkY|JCE<$FBE=9bJDc6E^VUWm}W)eA2EA2P^HJ8iqY;w)Pe}9`s(q77eS2pRs=q( zvTRUZyB-DG4V_8H^xl-imrD^UE(TeB39y3zK3Yk9wGFB!mS6DQU_CW3h6!Ts{ZBlTR*bq_g_nn@ZN_bp1FYNU{ zt<^;Q>)>F_cTTCg4Z_}mogPy@7ahx@2BJ!UMDT)ZrQkCT(nx1#4!ButrTD&B_K~>b?`MtIOgi9sK^y7nsf2<_nFE%?90r>G!LogGrVZ{#t<*M_Yq<* zBSL(MWzXV{2I4_9V#%n^s+$`YJ>hi7gX@1G*R=puxwFU#)t9N-c4uK~qn`ZZOKR7r|YTv*X+*4*x{AYGtqvDT^U z^M0d~mQr=Ysb4LrQlZBYYWsp%5n(Qcw?r__Eq3LHKH{g(4#Rd*8zE zmR$VY2?TU3!rDuv$B@r)Y#5@69VbIZv3b8!r%uXBpXPDI-suL6j2w30=pexdG2MGP z;&&HrwnsE5}oIbY#$vcZ>q88T35kElCsLa)u2f-3ROZFv%=tG;)=!8`W<$FmKc_A_{5r1dzCcMF+6C} zZIg>K{_()_bGGf-1|^3$8}@cwMw2WOG z7mgsZ^VCP~l=QwDq549PEO!bkwLYsBebtBu9^vTQ>Ec9-y7HaVlYrKrY{(5J?3=EF z=8M{2ExQUzN8Mjm`~lK^hIW!Gy8D()MMBoHB!|;6-CK`qLNJG8fteL8P(b!*95iT$ zeg~R2PI@nlpPRc%M4OcS&MO!r&M6}sMyzR?eGeh?hnZQcRZ(k%f5$;xKZ}wl5V@|2 z3Vo?t>y6|UF)U3VPH4g7GJ9Thd)*R0_x3!1Ir^1qoOAl=kw6T6*%6qKbyJO2dL*v&G2=4wd+s1KWb5P zpRB~Slq$%{4N_jPtl8dC7k5}}49}59+C<4lVvbSqZRb2<$)V8@1Eq?i_xh ze#2^OE=+`1baCUOemnEgc@P(Ct)Z(xx+Bj-tviYl0?x~OV78QGQ^f1tO{KACe!z|{ zqXn%$qg3lH$NYDYjPP0+#_RSjDV{Fxjr;4TXYz7PhpSnc{(fI-Cs3H5O?r#%^HGJ5 z5zbhP*ooykf&bo*{|%YZNvVnpZjEuKzb%)ix)VKeQY+^xzR(BPT|IPtUeAo=MH#5- zAXlR@H#Ib$ain<&)>kj@`5e73%W~j-E-5kH$vOyw(O0-sZ8d9bj|WTGm9(D)yU%Mu z_`CK_AKr4gsfNfLz3V_`sfD%Nm{=?I2D}%C#a5TOQX;)6SFkKO&Z3K(`SYUls$1=X zMlI%?N5vVEQ5|Q&RyQDio&E-RES#OJ5|<$2CeI&=jC{$a$K7svZbKEZd(`r)4Of(V zi#6i?8$yP02XNH!s8gOFc3)f4E9R_}K-8K$_rvBV7q+Mdmn94J-Dwl*7kW zS-OSUsn+0aH)CU-BZz;OufW_YmN!w*2;Xi#I^U4e#_by~xf>c|euapBqW zoz@L+tM~3j4=%@yj-*)A^!nwN>Ly2)R^j zBV{&eUDC5-!>Q0vQs~&#jne`0x0QD8+YxtVTkiMxD!IV(FmBrs!pBCmU0X25H6ujJ z=v~@(28^{VCk_eGd?Zy)w*&1pkN9IZ=O2b1l@f^kz9iAy{nef&Be_JE82bXiJ)`{a-3)vmPPTU4j&41p9wu1`A6~`3Xtzcy-L!&FFvtLROd% zrCEa^9X){#XZ`&~<$=oUXu&qKhLtBpcVQ%--!$Ey%+@yr9y|cAH5l^>1B(HH;y`kI z*Aa)MrqrNTMIsaSyZAuxp)C?AKWKkq+5qwO_TmoVntRi;PU$)jUS#!QgQLS;x#EN5 z+-|)m#r~fyO|V8=LL!!H?i0Cj5Bs=jhx=Tlf1J$v%>0ETTtCOWfxeNgS|L7wIk(xW ztoQY7I;p~&rDW|Ub7K0yjm1M2`r|J@d}(qDa>E>hZl6gX_O|k&5y0(L1brYh=|Znn z$jhPd7G&RJ;(L3Ws6LzpY#TKEqBkwM z@CGP=*>4GnA(4ys!k=m-2URvZNG@q>4dWr3qUH7!5wCA`H-v2czJVM!7rW`6m%D~k zH1ACJVTIizUo=%Z`V)%TC}WJS)73pt{8VOzm4zl{hVPbs@;g>S92$^zP8JmSvJQ-v z+uefn4&3uG7?3+>g`E|>w%QtcDhFLz9}^)5+pc6b@~zzZe?E*1F(fV!(W(~we=V-{ zl?tLcL$vP)`Ct&G?$%)^eDG$IP<>Q*>S4 zQ;?049Ezto{a_--7vkx*^BlfB?vn1oZ54fcFety%tQk20cD1eZRtp@qs(!Jx+ihbRj%s_q_V&(<28{-aY~5M z$|b#8UUG)*E48O}drK#siy6Hmt?czCoqDq;a#dwF%Ji3=zIRXdBPsTsX^}0nWBxG7OeNz`)qkq+cwN%+dZljr{GG{AEw8{oyH^Jpx9)36|LRcD z3h zJqAH^$q-A;Kh(aEMcC(?9KB*I<~l4g6$_FlyLuX50h0PxMxG6?$8CL3E!BG~$v*CH zyCLt{>QQQ^1w1cc3p{QLsm8A=#5Wr7zw%1!%bgg<=Buere)(hHE?df}J$fwK2icI` zkhzJsSUSQI^n$P$u0UwvOJ|~pc=eA2J`26_t2qTR4<4;Be@K-uzkDF=$pK2irY!Y5 z+Lw+_;^^LIQJ?0cZE5JY9n7IMY^$=oWk8wdCLH_V=cvN`EK z=-lTFE#r(HX-!-fff;dbSxNYk&@O*{)QacneS0ZplHgYN@CUNL*tlp7d;h^!M1agW zCUF8DETE_#fpwcQ{0%d+BqcSQ;8NP9OOkh}zq0#on{Ot3F8<+U=ks&={VPsHc(^6m zZ9rd^M!y91p?J#O9Xo{3V1$o}T52hyJf6lMfwuPX?tNKfIv#ZA@G(B^zXB*JE<(qtIS(|?aJPx zAD!x_EYcRF(X-b}1HN7wfyuWVg>nySxX@e#f)9e)j|;Rk|5ZH$S~sIFA5C1&P?aKK z%v~pIVW34?!BFF0XTQMZ|L5MRSUqfdlRT?^^BZWM*#MO1=%3tsq&zA4aoy}qk(*cN zguxG`^qHCZ=s(M%?~5+JTvF9Us&f2%_wX)z&YOpax9Y#PvQ9*XcRk$F{vIG*pJUEn z8*gSO{8x&7H~wzV^3_}N`EN5`#z#%?Gd_C=sDhySj=U~^iBsnlO|NY8goa<~WTNztv|Jf}SM+5B*Tbb-fhb(Wbe@uy|jpX4OpT6kv@J;LbD_m>ke`WVu zuAitI{`Lc`P)SlJ&Dknr26rI&|1W6{|L<}vf<-4ArP8p=d4fSbU)geSfYVKp2vBMQ zsxIy>nhan_F|M2;Ie|CM-z0|@uRP=&qnnyHj!!;Ic}H4zX|^p)ltT_Frg7QfjDOQB z+Fu$i_tAx3v2;l@V7rRUN4tC#J|n#IaLonwSPg-c3hHRlt!M>5g>%8n>NOCE3U5&H zKM55es{j78Xc7i00~Q;Bi6jW7tq3@NWFS8|@hBrj96< z{#xklj>Fd`R4x+wm%A{Ts0pt}2Ihq_=N%qgBC(smr7zN+6&wPja{yT!*VdOJmI#Re z(m8+x5Ws9ROXnXyH{a*y`A_ah!f!$WLkK?(VCMa;Q9)GP8%0vM$Ul*Nv^9Q?3+^EP zmli&_qdSgSJP3l^3Hg@(MDIv-8e{gF|^>Hmv?hP$9Kd zG$X$Z!7RL(zATnHMi%IsBIqCfO)^o^tarqRBP7a}v1Za{!cXJ*aceQjOB!?7GWPLX zfO*LZ*M1{N-B`d0uWgi01x@&8eW@Q*a}Q2=`NNfHqcSL6tk3=D*_($oH(n#DAEKxr z{M5+}`cV9lDaYO2U7k*tFjPh{`E%q~7lmFRaHZ@Az!qS9sxw{%UeunPkFOq;@|ZoO z1rdL{XT~gwblyG;61p(XwBcDNRzYmeP3c(lRVH3x=-z(^SpKa&52SB2Oqy%+k#zY& zHn!Ruv6bpUgO`p=2882C!|tHDY89F<8JjIsft$CMj~yqcdGe+8 z64w2BL5FxMEYSl(YN<;_Z>4{~ zyNvT1iPwz9^fN11ohVv#z3wRrWku&ooe!qKkIoUU(OAriA_B17bq4T9{EWHL`X|SP zPOcBqZs2n<@syDrc_4xsead}|Jy$CjXHrS=-LG?n!uX;#6YEOrm4eCJn7spucdj1; z^lM|R=NE^S8e)8QI#ZfGL9KM}WihFXpGRjPD4GmwL4CTPlQ$*It0Z{5Wo#KAAwTf4 z!D)RwX7zP|BqJ##=JOvl&lAdGDeqrER>XF6;+4pOLD8c_La;bVN+S^AF693cBY6AE zEH!<|=6u4&T77%ya>lQQs|&p8=#O9!Q}A*?>n-5H7fR0qjNjXtueJZhg9?E?jWW_e zkbD35G3lKfWukwm6kh`FiDJb&MT89Gdl4S6Uje7&db#085Jf=AdK z0jHj-Ex>LlT*i+Dco)@^JuXB-f6pYeP6+94Xs_S#(>F3>=0rX*zn!EePFO1XKaqHn zfzL?0fFPMy#7@cGaRE9F7@e^qF2Z-0%HJMT6uij!(Omv{o;wZ@*f>DBWIji7RTyYc zBy|$w<8^Vjedy>{g_O#ivBM$!xbdQYJW1XHPa6GZ0xF1Gg49(!DYOvHH_5M&vVmn7 zpfRd5t|2*Hi?@s{597a73_QEdKeY0*+omz-TX5lHgEs;KsDbd7dHpaAq~Q#VX}-g% z-%RXA*~o~If09&S9~r=^vNs`#ODDA8F@j-Zm=e6Sr>taO!MpRZl5UDg=x;{OLRlpT z5F0?kg8V(s|KTfxnJ;#!+(6@mq<20nq{EtOUd+w~NW}?AesN4HPvM1&Bm@dtqCIkJ z-09Fk%{)7=`SIgKCtsMI&7ZSE+_bgO19e)L&VezO1^gqY2Y%I6#2>o^spGj)K8E;- z%K^)8)-|_DPkENzIF#OZGUtf@oQvy0fm{kcuo0WBcRWduNDDJ-tZl6UF_KWn8oLDe zrY$1yM&@~2L@M1_CDF#PG9rX}tnvhKUA;rB>ll((a=40G%>=;Q5AEerXx?3`QqOL> zB*p+GL`eK_<;QPHG?sQCHaG!6p08RLaF||W*1_7|xIP4|Y`shA;)=8A%=rL8j#!10 z{@r!G)B-S@LkBjP645Fg2uB4rV&l8sL-yF=JVA(N47;yBF*FGZrRTF6OpEDgHotO~ z5Ar;{SitH)9o0S!Tyq1-#br4zO{E5;K6`KK#o_txQJn2*r?UuWk-j;UUL>hf7|{#l|G5gw&zah%mbvtL z3{RQwnv84J@Bb_c9VB4x z&|1vDF{;Oz)%L6~`P^JtIHD&=I`El*eMR>H5K9zdj|tDi_-4Fe`I>f~0s-zyEZur# zevVxZ{L(u*89mU9#0;$ygQ&oR!Q=|SJ7RM7wxCR)ygk{p_Jtmp7`X$JTQ;>fDL&m_ z`f`%>RSJHIr7nmS`vlAxR1;7B9PBxrg0nn0_-PlBp@`6weH+=jN>!} z1O6t80JO#24}awzg1OX#npm;yYl_BlMU2g(gcFb23{1r0X4D>_p@y#rw^Wc{+W3oT(b`Z=m5Epvln`y*XO?7>2HZ>zK`olL$1A z1BVd;=&go*AV&PR*_-T*_k2~wbhkKW0rzs|y7qF#Vopkl7l7xLJ*xATXhm zpV%J$R+uCKm^N&**DL3@>y`bb_2ydSF72Ef<$2B-E3OM0WiSQ|p&Y9*Wp37b;*LHC z6|I`OG-qzBx6WSg2M%&)9++;Ay!5h}H?HUMe(m1?>#PtZ-I&*8gk(6P+cACv zM3C@7dZ{$=ZUIj{qTxZlBJ0y{;3QvJbg}EN2w&&Y8lhfa4S0S2?S5t7Z(Xt;c`kO^ z{=P4BKD_jLCUbGgr$LTa-g}mNVc9u71ogBa#~bFsnKt%d%>V<&TSpnTnj?)(vZZ*& z9Yjc}Z^m!VUj+;!{yAvR+)mY(9736InmmJpl*)`!?FY6M`VyURFL%GhoGcxTMmI3V zPgGh13hNLH1NY#7X&;UadF3fJU5Of09L~sZV7@}(NX!@#!%3fR@^D0DWoR_fiQ*rj zysiz#gh0|y*J1_Q%+o>cmpY{DH4Li2zO*Fy#q|2j}H-xjc}q*sA| zLY#pt2O(WWUZ%5+8M4C6=k{~>#zU_00kwEYLYQ=O%m$?VQYYR?O|aQ03zM%=3sUs%@L>tdJN<2AP>_20CB#!m2jpQh`Yz?Lw^zc8{*C0x*qsfMj38Oad^fe_;r0 z19%_SJP!JB*P8okD0ww~5eH;tz5j~i6%xhVCe}7k!8dl0pfIj;5oWAbPRWk`n}@bz zJbKm!d8euOO*))D)>&mgL2lggdJuCQ=)Tc;{cTUN8*wZ{Pd{!PGlUB_St^ZG!mD18mOic=j{Sks~hE>dWY z_g|Cw_h^eNc7H843}cwtZ`)$ZedRMEisjwrFjChyGH39sd2u~{Z^Gh>`M$_4ru`xb z%9K?vsH2AG>E}?4EE~C92xhvL#a3%?V|2yH*PDG?@Mrtc)L_VjSDtx8#erJQ%WDM3 zgvD0>+1o#NQfo@BneCXtOE&@}?#rv+$6Wc^OwzZa^micvOyC0dI5cWJ?r@4pC$->I8+N%u>G*F&){a|xZgnwuvYeV}FHdk;P&#maToqAXy&I=(-d4uxGH26}n;Sxh_`57jYvZ;zqBlj5XT_nI@812( z$zYU@xer)Bv>CW}Pgg{ce8EaX-n}^rF69}oI(5q}Z_1e*K1Jng(uL{&7KFU}pt?Di z(6PB7QGZ7r_2SpCi0%BJjDc#-6eII3(Ywi^+d=8fo@++k?-o@Ji~ayc$isJ-n@{8T zZ3Q=MP zF2viu%L8;=<3Y`VC*{spej}p%02^}v8x%pvssG$7qNy z_no)^!KUA#89V5@s0-ZpJS`jf!0%e2h|mUwSD7;oW=s@nipMqmJaQ8F3rIcoZ#X2? zIlKD}*D6H>SxDZ?-(9wY2D{ddK6n(s7SKgp$PCOs-xs(j=JW4;Kqa3OsV$z}6l<=l z8wE_C{H-IB)nDzIK@6W>TX(hQtOzk_^(N(hR=SwfhgZN45`f6hV_;$NK#?KxrmSef ztd1%f($nRd!q~pzvLU)KWkk_c8@w2Fjc4wR)cSsg761a-j}&`!EAa82Zt{VR>&!hNE*Oa94X*(<>)%+@tnp2$WOjQR z->Su+Mt(JBeU=2QN8Q zM-_Jm(BXrufCet_Ay&hJC(bhPuczt>#Xr*$0Ucu5?C$gk&z{|uG$g?{uh*?28L;`^ z{^o%#KPoAIp2Eut6SRD-wfU_(V8BWOK6R>o2i6qEkAoD#MV>&#oY%aydb`zX;FmLCy!$7P;i@8N^)qzP~x!l!8%_K5RM{*D~~si3(BUFdA>%f zuWv3Mm(c$zoVv>as|bd?3rCKWOOon9<(@nIuhzai9_sJyTVqC(B_nJ0K~xAu$eJwK zLv}Gj$}X~#u@|y6lO;rktTWbRok^6CRAet?-^y+h&l%s}_rCk%d7eM+*ZmK#m-9Kx z=bZDo&bi*#`+8$A3%kyxHxSiwf;PePBv&$2^H2FT-Ou4C;R!l>O~n@mS@6=`r(D(T z0Ez%b_kmtNNPoZe!oOQTlEte#i!)MxT{EN7v1d+HyXs=Z_YQH%q;Isf=NWd;#M=b= zr{oCzP5Go^M}~RPY~qfYRD?B(7p#~A=T$1S5h_!z7M7)BSC?8_0K5iz;BSYy^t_f% zwtwL-rXMNfrT?@fA~e;&4x1{oxmK#5QkE@dfhK|+!>2#>pFWJxFOg8_wED~rG7?Ns z%B`#=A)N1|1{KW;FLQEe8OV?dYt3CxSq6hU+Z(U@G&8@f^Gb@)LWp$gffN&MLg%KF zkYyxUC%LRvwVppDF=yX8?_m*I3^6F(bfM@W>cU)?dKH^pSS@(-$H12c?fY@UFN`YE zfcERP40cId%b2@oiwy@}0QW-5OY{s4KjF-vv%x%R=F^jX$MOYTWy`cYFR+UIf`r02 zz7nQ%`Qf*2+`Ah%CCh4XO#!bAPe4zAD5+J(YvzQ`OnP)i_}snPc6m20lNaIxM{6HzU_3xk;ybc3fffS*24gC>Bg?WIvF)mu6`$ z{(Bcnjcz|btjJk(`9#6dDp7h}m1obi?KrK?jO2{!p?;&>dkEXo@Nkf}a1%}ROW}Jr z4cB|p!ctdO=#}q9S9YhxH+1TDjoGndFbKLGf?iHW@i)FEtkJ2yU+OP$wRHcb4lIQ8 zfud{XY{53uwhM;Ihy!6EG}ZImjZ+BOdDSn*eu6!`rg_IIuhgl(of&P7S{-r1U+fKI zcwwq@6{(6!QAIHdaRM&Emjg($PUyUgW#Vqs6()Pg>h8;gsXr$ z)~R_ONk7&~RdC&|#LCP`c_JBF_v72Qd+rLmmCFQTe%%L2gatSAYipu1R7Gq@N&sCX%w9v!FyIJD@SdTi;n9-?$IO>3OA`EZh za8CD}Sz;Wka8A=OC>solo$$Y#&3?W$9UnL>9lO5!qmP*8!1#gRwPaa}rl8phI7lE*#Pjk)$XtsV%yh`nGULur0rz{@Z!*?JCn5egl#R4ejJ?kZPjeMxeqC=drm7Q5?4HxT z+{M}1$p_bi!^I-z2RfA*qB<{P&)D1a9v?43q$5M8JuOA$cc(BN0{uVxQrUpPtAJXuQYxApx)TU#@YH6q)YKh zvAr0VEI>79HZU)p%AKZUFxy zA^Rxn{qC2w_Gc|sb!E+jCa*&8(7OjY#6Ig>D_E>1i9&Q|G!C&iNe>Ao1~y>MNWy%E zR0+bHmRQ$YjVq4$S=tN{6P}oMYbFOj`%}<3xI2y`on^410ZKnCvm&?ZR?Yzb7tJXAdLzu z-J3nX`tVOG_*%?U$}&l1Rwx%^T4Wlrdqx95brIx~7L5&6GrfpGn%5__0=|ByXuo&{ z*abAZCR1xf4oM`;m#Sq%nm#s$2SRVjNuGZsjji6C0LbUU#q(dRa3Zrral+zn3BhmK zr(aztflR{c_Pu@uZOKnpguY5Ml}YapqbWR#L%aa+agIvx{7!_3yyfQyM&3AY3WMut z!_N?f!kxK7q|H%3pDLb;cs?XS=CR46jSA9O*E*|Dwc$`4Z(S=(x1Tv?nw*cNyGB9Iu7#i zI=*wfvRa?F72jjZ)IyC`TvS`nJ{GY^JQEE9BwNcXizy2FCtSo8tfOar5~_a9UiUgL{FDjs{!i!UQ!xW zW*Zng)UAlM4vECLcs05nPj0XzMZ^=f*PrvYR)4_6yp4@t>m2Sg_duVdeV=u`la1>; z0EG}My+q?1*PrwCe*Wi~Pn}ku%x|GHblyLy0n}Dqpi_c~!uJ)udZDS(;?tE9(;Hk} z)j9mh+!j5g^PXLYlb$`A?df+8@EEwRFxy;rpjst4siOuqFea#({IxgPG;cNXG_>R* zuJsPE|8M{o7J+@|Y(a)xM)v8{+9G@cq?#Qg0(=~A8x||Sm^L_V0-m73FUfi2dDr2n zjXRYq=kRWj3mh1c57KhyXvG!V?D-`D>VE?Hyeos|Pn$-Dqx*vB6QZ8x^aD`_tgFjI zLvNtE28So8zgxOnba~&)NWij`{9Z`%x#ez(8fv;o4g_wYP)+1*zv-57KhA3Md*-qs zU{-M?Z=>5VspC|XxCawF>qaK*mW7>VL@gJV{e$$R1Z}y%+t9WK=P|5pFlXyp9DIZKTgWHI`z zn@xQG(R>&c4^K$&t&(wiMK|4YcO;(W+}t*%ROZ7`;G9ktJ~@xZ9^~v{c8iqsnLnd^3A@-$~Z!&5ggxw8kh{~DkS}rnJj9(m8sB)Clr3l z94mYJ#LoRaD*i#jRa!u`M;&`_9k&c5K-9^GCSS5YK6)+cP2-BIzzdGc-Eo1MVOu`Itgqh|a!e~1?@J-hT;v6AD>egv1vR}Z zYDB={G%rgJ(XNMtKVF*VYu#HbT~y`{fYnh0mU(aYSAGIy6Jv%75w%pcMTKm-Bh%b^ z9(aTkx9l@_cVT7)EgTW<J#BpA3JxA)=;s+7aT?^6Zn4DN#@QljtLWt)F0`f+xP;G{1!YCGG%n zm}v2io<*(ijEL#e)R4utOB+74WvEabyl!-F{B{=w9?EGQ%`B6;b*_~Ak24Hs@4LA%@Ml82yX^{sCr z#TA-?TX^Par)}=&eT}I(@mjO7j0$j#gg4D&wNbc5Q4D2!McP#LYc`NDOaDSAX)7%) zQne+o&j2ljb>-f|u;LDnsuO&i(@Yk-`>Dt4Hg<%8I+E9^;PJ-D)mKva%$5!J+BNjaYQRHe3~ z!Tqk#M{^x?|Fpztr6D~SBnU2Z!m#Q9<1otr0F{&wtiyar09ff9Po%+t*$a^B{RwQd z{uzo3{Lk~l%GANB-FC%Lv+P!{x5`prAN)LZ9Jz49LM;@xFhmBx(}N?2`~30=j?I^9 z7?G^&b`OH;)Bw(T6Mo7%xC}%=X)dESzR{XyyWI@Mv2uLVp&>FP6@aA&w$F>Md+Mbc zt4NlO-JPI1&BIz0W3LSi>L_F#U?8=fw?3Mu=9GV;`2AoLfZ-aTclW+zesZjy6V>P) zn3ov+d6hEUkVM0Wh^|6!_lkMZV*D%Z^owIx0kWkaW`RJG--M&-#%JYkYr>+bI z{h6k}xDl+?PZI>r2GD~#8WNnZX7^etD|8j`9JG-lk}VAv!OZ}upy(|13o~(igJ8X2 zTs!SU51GgQu`5PcVolSI6>_Nhte+(N2UJ^&oV8B@7g!)Lbvh@~&w}{r&H6|NAm-Hm zzylCCz-*t^L;(l(;Z|8rcJ~qFV6w!A0q%L4e^&ZDbW1(=5I(3)1(QsfXAqCaHCuJ& znASZnK5T%}hNOffZp$V6&S-P`cHqTLCr@}83<2fVy%5|p&_T-gLJtCbA39mB01QFNboKMWXO?{ zuK+J)KKnL@m^1j1{Y)Y-2@(fZ4cnKF)C42Pd9I*Zz89lelp#JK9KIIL5Z${!=%JAL+RN8aVk6Fg$wHfOC~5o;SmBzT_W4Fz$0*+85za*J1 z`lDl4nt7~f;y#bVoPW}pQ`zv-?lT8Z=}2m*yYE7BsNj(GfILL1oBb-+7XMhQ&zzmG zD=W*j(<>M00zX8fa5xU|oApOMx!#8Fete0({?RyVH6srFynJ zI|fyV52)Q7A5)qf&a23^K*+Nj@ASg*ByGyn`~kBi%Ij#?+S5|CpI=mIQ+k=hcghP~ zFy_FXLXm^-W^HOCifD}Ez|;xBF3weC#z?I23Q|~Jh71LO4~Y~cEKK*K%~5LqFgU?p zQ9;Y!FTS2*7oalarLBJsuJZJfBjKy$2v|Xve*6p zDVD8`+Bxgu$ISOerq=H5KCCM!Zi?O=~hy91L z_J3h`KBZKN{<{k0^dTSP{}{V2iRS$e>y!1SVo{GuXcz>(@ppe6KEwNbAY#6GeoN(S zt+HA}7&1wf5X6hT(K@aLe}Z3NlA0(TI!2w8Tw(W45K)$+b@eNLo9Xp*X%G}zNN~oi zP(#i71q&9x{)SJinJNKw$iZrz?IV!V1*T7%i=k0oyCu8;#aOb${iZ^jZo=ouo62hS zA*M+{D{HIlQ)oD`Bq+-FPY@r{rlmv+=nn>)%`2;-OqIY;nv)Rc?D_?PLZDKqFCRal zeec<^qwunl|H&|sqXQr>CY&C@0e+>aqQFl* z2qjlW@)(qcii#-ozg`ePx3ryBC{MO08*(Sr|M3Py5`4(OoSaI)VznvI9{fHnlB5+9 zaH-i;_ndO@>iCCiE(UC*y4#iuoIKGY@u(XkuiDK~>^%?hh5K)Q#br%x=7wChbNEv< z)%VDwf7W4WMP+idl22DzTA{CDYcwe{O@knAg>C2{8^(i%8tT@04JmXh^RW|*!62=q zLhGq)ugbXt$AJ*tQ1!Q_7kHOHn(;JQ@u;s+*vgD!W{G^Q?S?%DH5E$R&nF$3mdJ)5 zs~&6lvgC+G+;g9$&Ve*qWc{4H9QXVFWWbxTUsi+c4u;2RL~VN?8E9??9Wc!<>fz^H z>$jdaE8lr!K<>N5H=)rC3?u7p%VAFU-A)0Ew|-kcnZX^pIrwY!a%smO6>p`MBD0n{GH97}_Kao}c+b(t66*bVE=5_YPB6TiuSw_>SkgVOpX zhHtr(Q)c=}@mPQ&(Bg-yDpwuQ!1Z)65m?~^qY{(P7xn%$7rYArwB zG1yq0kEEMsHm`Hp}#Y`3J?kjCLF}|V5oXlwndA0D-(U)UcTLS zSTh;SzDrrX6-Op9D{Q?c>~N-hLg>7`>((R#8T@OK_$D50{Sv%tn8&N3&^#OVCHudd zUu1G4FA^IZa}9Z>Qyxx9cx>}k+T7e6b?|+8v?7b&_q)f+!nu;lEJ_VyzREz0PSE_U z-+0=D0e3~DqOrHYFiEt_=jpgW}!y%F5Se?L(XO9FL zzG+6tUfQhJ{kp&evMHXFIIxY|IW*f%^;90j@qN9o_KJCs%+yuHoW@l<9<|I>RRG>= z#*xV_9*e7}952rY)A&Ovsh;bP-^=-JZCjkxCaWN zs~VzyuB!{F8iX;GzN#9T;Wbe8i_+WG|NrOTdBC_f{dG25{IUix7F60A2I>`nM*4pM DSmM1o literal 0 HcmV?d00001 diff --git a/univariate_plots_files/figure-html/unnamed-chunk-41-1.png b/univariate_plots_files/figure-html/unnamed-chunk-41-1.png new file mode 100644 index 0000000000000000000000000000000000000000..5c3ac58a1fdb092f22f851ba0ed420a051c51016 GIT binary patch literal 25529 zcmc$_cUaTS^C$`-VCbPYkq#mtq4%nYR28Iz8oD$QkX{2K3W7)pNEMLYLYE>$s??x# zsnR>rJDd-`-}iUE=g)he`DX5Imr!q*liq`1$=<^Qj8(i-RMLgJX+>bA=-RkLaMgbLCI^sVn|9RA7@kn!Ai?dm71Zf|d$ zy%bzw>P5D_zEB9 z$IZl_vzzcHqa`J@4lA5DrWguMqF;ft{R;&Ka})ULL%;x%1W*?dF7hohod)zx9ci7T zSfQ+lu>52fruhFs*N9NgU$y(G?_8BXsh*xtrb*kY-}2* zPohB_Kl%Q>xO<3*enU0Q!;M4CGkIn1P-f$%@$-8szwo(a)K2e~alyIu9|`6Mx$i54 z@oQW-dfWsjROgP`-@42gxo0gjRz94fdc`BS$SI@t`feE~oSPA%iA&&D6C};|u>g;r zWTdV>x~fObGvcPHnQDbe@nK9&$_ZG%^GVXuQs1h-yh6YU(>(zKPx6Rg_n!8`9v}H5 zD@cdZhtUe5)~magzT$)gVEvvaNpq(QmmKHWwI8Yty{jT3K1wU{w$AQw_SLZ6no!(^ zlb(sR&6jEqF6QhzQ8G?}CIX*tnoiS~$~C5osm_>tp8Nm2*%(#W-ZEWKyicDXOyW5@ z^5^BZi`2;JN+M6Ym<#T3O#E*v2t<=)^j5lrImzW!jM2@Fj4npoHJmV#(2GRSNAWf* zDp_CsZ(AfE3VMiF$3-WDRO2tbZd~cEv{W_g^;po)Zyi@2wO-AcM}{HAUNRQPSi~&n zU^q(!{;ZCl`-yxL@wFm4j8>JZ;Z`7*&0j}#?8ZrK`!O> z=A{zC$8}?NuK48e(!4YotDrJ8hj>AlK)`23zfqQ|;515byzg|F#$YLF3DKm1CXt!Q zcn{xfGlg`rrd zMSSE|&-cBP#~PHjNO;YkZWHQ_JZ>df!*Udkc=c?7rd@08^R=8!I59_pt>C z)zQ9vi(XDHP8pS^yMl6X?M4z{+gKFZ@n}1Hguks&sh#2xtKHUaz7%Uhfyd?FeQbN$ zb1KrL22EmTg)tkhjlbmN`NnZhlfl6NE zk&FVZ5X=w`lJ{E-hI_q8Mzfz(db^3$>qqfW&YnY#E7FFv;UzNcLSnVreMAQW&IOlE zHC%i*=*j5XU3>7s(QhQqL&QAo5$P*&H^!Wqk2}Tz^>)=BQQ7a^(=8YrdBGsvkj(V7 zyJee_<8(%G&lD^vt`v$r{dyZ&;^O_X`m*l*`p1@9s7PQ6 zf>K6+2?uNodZe^KZ78Q|89Q?&ekHvf)*HR{Yx>^H=lv?~e=e|>UXy5Hly6#Q6mn?p)QGC z{S9S890n+CR%k%NBv@IghygJ4Y6>}7s#3TWmg%f;GxMXi%gzky+QG?j(><;Ce@ zXU)Yne9&LYCou@p>*D%8U2jwrnncJ76Zmqt)p#;DIHxe0F=VoEu43!uYI>vl9QOUh zDrk|JBWE8T`i=^W66BihTDxO(RZ@b9F{c7iNpt;3e zJ6*YY%?kC{Y0vaH{)6M_*QIzi0rV>u{dvZS{q*4x5rC|xr*;G8jx_Zdf4{y<+vH^t z6G60~A2IQ}`7+M7Q`n2ZRgoW_$AX)Km509Edupg0lr$?$?2G5t+;48xQbE6E`P!EO zAEr-XXg*j*y56ubG>PUKAfsPA;=Duxdzj8Ah34mAC)IqXBQ_h zQxiM5L+g@TPz?T@6(%>f0(Y=cQSE+!{>`V1m{dgQ2V?dT*>-H`wzjWjf{~lns!s;y z!?=6Mz_~Y=MSPI% ztFZJi%u^zMgAr65vx>@lx{v%aetx;;2r*_-u4?7=LMa{EkSG&!(0r@oJ<-%>ypF5N z4-t_;{tgoOZR3_zu~~IwSlPnL9tb zo!S22>Vb;tJ++eA3L~-vB*H2&6f-vPW4^zBpSOq`9thf>r5)3A|8qXL8*~}ybD}%w z&t%B&PuypTU|f-`3lM@jZMZ?{nWTLu^+v6_3)N68gh+vYlxyi_-qeYTE7tP2@iSVy zLCn#@h-)zknCYuYdOj(SOavkFL=!I7wadYVZkS)xm>9lty0R%#CPxa0Mk4KJ;rdA<8j^WX5GEGYAAM;*YpmCm`IE)z{2BzB#Bd*66KLw!6zJ;L zenp#={J>82N;DY53Mr zN$Q`5+87FG40*;ex4*{t=N6-^Pd-o>9!>SP4$^6f1pN{ zpm`;=_cBF4^RD43C=Jifx|T{tLlff!o!QXLLyz#TvZSLEP7zZ2p%`y8JM1)mIF?`L z-dQ_4nkzBre7C2J;=ibfc%75!?~Ni?qqlA%tkst@+V{G#c;8M=BxspRMlf#xC9f4Thbj54*XYWyu?& z+THFui;oK_i!1lkp+2LySz)I6+i)>EuMX#6%;%Az0bXCD#xK?<43h#jAf`)VF=i-! zbykFfr2bl{4V(mIrKlB2m&mUGO%k^B(m34`QW6up$yd~haS@0F>3X$tKzhk6+<^T# zAWzB)TQX{NR6^{$at=+76HpRRQABhPOjr8$Z@o+TWPp&0tx4wJ7GIGXUvT6FfplLV zrVqP&+D(EXnht9CQCa!z8XEdI5KV?|KXLTukkA}i!_sP2wB`g3auH!&#t$hj<%s>N zZ=#0ZsqTX|(NIFvi7R2pxy>}lp-JNLN5xr{GV`>G2px^3Z7MARGs6myBI4KM>BekWd0-W+tL%C9anKdgRghf^WX~s|1mKZm32*wO$HrR=!O)*H|fZ~h>+)|!NPgy$_;DU6+x6<`Ie3y+`fO?o$ z;>y~etk?uVn})BYNAV_|Ju4tXxpP7I2MH7r1q@R>dLX8&Z9V3=-s&vkC3(Zb&_xpn zsHYmYuwSCf$OzDTne}#h0G&|-0rY}eil)A0fZlS7wSWM)2p2?k&jY(A{dG@(9H~~4 zcosi0{F{r54;P$EJ}g(XzTaOf3+Api+tM{M2v3YJ21AqNMUR|JZD){Wp;5Z@!u6;OZL+rU+rr+opa(X8NRBTiY)(Y5Q0D&?<&XyZ^MBzH|+M- z_?TNgzNgpu_}Rf<)uKrL(RtEbc(GOa$z;V_gK&(FaJA|Ku>SayE_h_N$w;=%V?<_; zBBD-z)U$(d_$M$M6zy_FoBKP?C;&v}?R2`H7a&T;4Va$<&Vul|_Te-)_UfmPua}J9 z@%eOW|MK2oVzbcDuHw{cnu{}}*GtF&YqSmZ$V+`FKx0TTwjWfwj(%y9F=_tp<-T|Y zite<3+ezadA~5m?pk?9;^?!YSw+jMuzjh2Swd?zFl*p`*@p9%Yx?mAsLkPm(cc&f< zocGYAr`12XbK=EW(UK-IFQ?C5ANh2<_}xPYSKp`o!3BGtUVRr9ww$UcKuXPy{uSNR zFBkp#x%a}89`b-Zucn+~Vt)I9(rSO-5&zH?nPsqpJq~D4Z5-6&{iT-_55g}%#58Gw zxOU1%@lb(LwiH^Ry;V3wv(V5Y^k=mU)R5cc%>7@NV0<5Y*I^?F z;FCQWyfk>tXL$<&7dV%C`LZ~0FHknf>nzPS4`9P^VuOC51b&aqjc>JV-bT0xH- z_C)+TJe(RFrV$ID`P_Kt>HJBW^KWVyin<3ase~FIfC;L6tbq$n(y2Nu?%0!=Xn`gT z=|Gdhj80s)NWmz=61k$C^Zptbu*s;wwwd~Ytgw>XoA4SPs9~}gpks&~wX%z);4v5n z8DY8Cr3Ln$-z(tuM2jZ$AYwBIz?(K2A#Vy3OZVul-o-=OE&X^8FY;Ip~#|F#Pv58WHXbPzN=`R9&n*#bS2ULI0 zuAriW6P!z%BS(x>8;&&sfqJS+`vKUlEU^AWrv25ijk`o$`+6DG6!DW)wU3UbfY5L` zU}*=Kr8S1dxrQO{V*E_Qms*R@Oecm(NqNGKAgL{2 z{lW4&88f-}rt$@*{kVWutbitAmF4A(72Rj6sDNWHQWuf3ca?Q=t}Be(AxK?*G0sR} zL-=kQSZd9jtk<0O2CQgV$wM30nn3XeUvmOrw1vmF(EKrX>_(;Kfz_6f?D@Dh{t~d^ zG6M)kN(1vRuu#KvJvLaGhpg{Npvw!C$Z+NAZEe6ROI?Roe#G(O(ZWO8z-d5xMxEJq zn@0q8Qo6uOKs1H=P3xq_wS(K=i{qn~Uwph~q!%zsVIP!xtA+89yd91Pv{&lxJY*$2 z-lZyR=szC0ek1;l=#gs*fLhEhw;N8Mt)oqt#?3u_>sAx*6sy7pd-BY$g%jOChvlAG zbbC(TI+Cnxg)Nl(<}N^lR1>gj5;G*$S%>C2d2qyPAfg4krD|`0ddxL83DX_5fHh}; z@P8(==+>8Dp9gy$SvD=%58muwj>D3(qU9O$kiV#8N0R}u6&{fZtSUCzyE+} z!)e*Bg`>$Ej9e_kM-q-u7Ly}wj6@PJvbj!D9I;(BiOkUrTj7$MdvzhCf@=r_uO zQTBb-cIln*B~Hp6L2u`MJ^zRgCrYxyz8PKP(NIR{6w$koEG54Z9^y5gdS!h~JGYBp zx))g4Pa1-$7!AR2I;x?V*Pe}(xRjET=Kv$F}&3jDHPrivD&aDgQ|TS4k!X)N)&45Hl-+4&NM#tHdRt2%(~u3#+0KTRP#%k4ls&_A|UxgrTluWUO@~t8zJawDB)d0Qq0-2-2 zlxV0SZPh`sN&Z{%#2N(E@N3L&@eL&5tVaWvABb;(ezgz~mr=@6Qh+Wwh$^^`0JuZ^ zbv>q1E)ynDPvtEzHx4+L#aYfc1G8l&8+k@LBKgI!r?a@kMvouBgo9jFHO3OzCLg}| zflqtJG4}+W2oT}V+g#v7NS$Fyx@fJ zB)G!<@q5g#cKBZ6mX~wqw6dm%EgSmPv+d`Q;`c7@nsD_3OoXI*p~G8(UqP)vour)?>%{x#dU1dQJe zexl-*R!$=gN$miT;{bN*I9;u8bC7$QKC=8@%4Wr zV~g;SU8Avr#X*mIhPuB}gF7H#TdtdoWVzHeA4&E(`83Qq0%)O;W)@zRfJKqv9k) za^({PvPB58!UI)?!9xZV>=2ovyBhB6Y z2a#Kd_$^QmG8fnh|J3`oc)|uIx#JRojREVIKG|1XEv6tEm5Ufeg<;$TKCgnSWNGj+ zoD~ra14EVE+PgQ`0bgU74c6bOF|4jNTQfmp7|^Ny8TB?!wo`fp%*|ARv=+JUSN!6( z5shKg|Fi+7hil{%Yi&fkH9jOj1%$Lwe1heU_%RFIxIA@*yxZH+sivf=U$w>8pZ`Xg zZ!^IE7WHA=`Wq{7ey!h@#^XzU3pFI5J}8a?C|&p2vF<};t&(u_DgHs-LohrZsh!W=emQPw*7>PG-3>kyjWZau zpEVByoXV5#3_o(Jj+{W2=}z=?NyB*J7cz)MYIrE0-qDg6bUPuc)8!IovZW7q4N3Wpo3!Lo2t&-Yc1 zY!*)Zr!VG1v=^`+CcIunbe1 zUSfTM#B4B&W@z22&&?fY>#}{p8kGN%Jk$X!K2WJCpuu^f`Phv%IW;VSxOYh@`)Vo# z%-#HH%K`_rr0SG@_;H__V&zs_Gsqvu$pHWWPSZSN0)K@~FGuV2dg1^Un(t!En**BAu8ZhQT z%!p5VW8)JfVab2MU&_bI+w>8>vvN~~Y!uq3r#%l;kj=x8+^X%m@;|biUjFzP`%4-d zml%%mFFXY%p8Fv>fBnNP-I^*TdV@9r^xm*(o{%x1HMObh7peDWO%wh{8b=jh_hi@!! zc;f+EL!l)yC(_uO%j=0R7Ihm|zBk~~O)GvQyATSlQQNz=mY*X(O1o{9$a$T=%XuWQ zb>jgp@@hsLn`3)jfc z6sPVv%JuqND?&EwsUg3CBTl=<=Wbx{UD&-&?N-t6URlI&3y`dQ>3dz{&mi5_gC&A-@wv{}kH& zkEkY|JCE<$FBE=9bJDc6E^VUWm}W)eA2EA2P^HJ8iqY;w)Pe}9`s(q77eS2pRs=q( zvTRUZyB-DG4V_8H^xl-imrD^UE(TeB39y3zK3Yk9wGFB!mS6DQU_CW3h6!Ts{ZBlTR*bq_g_nn@ZN_bp1FYNU{ zt<^;Q>)>F_cTTCg4Z_}mogPy@7ahx@2BJ!UMDT)ZrQkCT(nx1#4!ButrTD&B_K~>b?`MtIOgi9sK^y7nsf2<_nFE%?90r>G!LogGrVZ{#t<*M_Yq<* zBSL(MWzXV{2I4_9V#%n^s+$`YJ>hi7gX@1G*R=puxwFU#)t9N-c4uK~qn`ZZOKR7r|YTv*X+*4*x{AYGtqvDT^U z^M0d~mQr=Ysb4LrQlZBYYWsp%5n(Qcw?r__Eq3LHKH{g(4#Rd*8zE zmR$VY2?TU3!rDuv$B@r)Y#5@69VbIZv3b8!r%uXBpXPDI-suL6j2w30=pexdG2MGP z;&&HrwnsE5}oIbY#$vcZ>q88T35kElCsLa)u2f-3ROZFv%=tG;)=!8`W<$FmKc_A_{5r1dzCcMF+6C} zZIg>K{_()_bGGf-1|^3$8}@cwMw2WOG z7mgsZ^VCP~l=QwDq549PEO!bkwLYsBebtBu9^vTQ>Ec9-y7HaVlYrKrY{(5J?3=EF z=8M{2ExQUzN8Mjm`~lK^hIW!Gy8D()MMBoHB!|;6-CK`qLNJG8fteL8P(b!*95iT$ zeg~R2PI@nlpPRc%M4OcS&MO!r&M6}sMyzR?eGeh?hnZQcRZ(k%f5$;xKZ}wl5V@|2 z3Vo?t>y6|UF)U3VPH4g7GJ9Thd)*R0_x3!1Ir^1qoOAl=kw6T6*%6qKbyJO2dL*v&G2=4wd+s1KWb5P zpRB~Slq$%{4N_jPtl8dC7k5}}49}59+C<4lVvbSqZRb2<$)V8@1Eq?i_xh ze#2^OE=+`1baCUOemnEgc@P(Ct)Z(xx+Bj-tviYl0?x~OV78QGQ^f1tO{KACe!z|{ zqXn%$qg3lH$NYDYjPP0+#_RSjDV{Fxjr;4TXYz7PhpSnc{(fI-Cs3H5O?r#%^HGJ5 z5zbhP*ooykf&bo*{|%YZNvVnpZjEuKzb%)ix)VKeQY+^xzR(BPT|IPtUeAo=MH#5- zAXlR@H#Ib$ain<&)>kj@`5e73%W~j-E-5kH$vOyw(O0-sZ8d9bj|WTGm9(D)yU%Mu z_`CK_AKr4gsfNfLz3V_`sfD%Nm{=?I2D}%C#a5TOQX;)6SFkKO&Z3K(`SYUls$1=X zMlI%?N5vVEQ5|Q&RyQDio&E-RES#OJ5|<$2CeI&=jC{$a$K7svZbKEZd(`r)4Of(V zi#6i?8$yP02XNH!s8gOFc3)f4E9R_}K-8K$_rvBV7q+Mdmn94J-Dwl*7kW zS-OSUsn+0aH)CU-BZz;OufW_YmN!w*2;Xi#I^U4e#_by~xf>c|euapBqW zoz@L+tM~3j4=%@yj-*)A^!nwN>Ly2)R^j zBV{&eUDC5-!>Q0vQs~&#jne`0x0QD8+YxtVTkiMxD!IV(FmBrs!pBCmU0X25H6ujJ z=v~@(28^{VCk_eGd?Zy)w*&1pkN9IZ=O2b1l@f^kz9iAy{nef&Be_JE82bXiJ)`{a-3)vmPPTU4j&41p9wu1`A6~`3Xtzcy-L!&FFvtLROd% zrCEa^9X){#XZ`&~<$=oUXu&qKhLtBpcVQ%--!$Ey%+@yr9y|cAH5l^>1B(HH;y`kI z*Aa)MrqrNTMIsaSyZAuxp)C?AKWKkq+5qwO_TmoVntRi;PU$)jUS#!QgQLS;x#EN5 z+-|)m#r~fyO|V8=LL!!H?i0Cj5Bs=jhx=Tlf1J$v%>0ETTtCOWfxeNgS|L7wIk(xW ztoQY7I;p~&rDW|Ub7K0yjm1M2`r|J@d}(qDa>E>hZl6gX_O|k&5y0(L1brYh=|Znn z$jhPd7G&RJ;(L3Ws6LzpY#TKEqBkwM z@CGP=*>4GnA(4ys!k=m-2URvZNG@q>4dWr3qUH7!5wCA`H-v2czJVM!7rW`6m%D~k zH1ACJVTIizUo=%Z`V)%TC}WJS)73pt{8VOzm4zl{hVPbs@;g>S92$^zP8JmSvJQ-v z+uefn4&3uG7?3+>g`E|>w%QtcDhFLz9}^)5+pc6b@~zzZe?E*1F(fV!(W(~we=V-{ zl?tLcL$vP)`Ct&G?$%)^eDG$IP<>Q*>S4 zQ;?049Ezto{a_--7vkx*^BlfB?vn1oZ54fcFety%tQk20cD1eZRtp@qs(!Jx+ihbRj%s_q_V&(<28{-aY~5M z$|b#8UUG)*E48O}drK#siy6Hmt?czCoqDq;a#dwF%Ji3=zIRXdBPsTsX^}0nWBxG7OeNz`)qkq+cwN%+dZljr{GG{AEw8{oyH^Jpx9)36|LRcD z3h zJqAH^$q-A;Kh(aEMcC(?9KB*I<~l4g6$_FlyLuX50h0PxMxG6?$8CL3E!BG~$v*CH zyCLt{>QQQ^1w1cc3p{QLsm8A=#5Wr7zw%1!%bgg<=Buere)(hHE?df}J$fwK2icI` zkhzJsSUSQI^n$P$u0UwvOJ|~pc=eA2J`26_t2qTR4<4;Be@K-uzkDF=$pK2irY!Y5 z+Lw+_;^^LIQJ?0cZE5JY9n7IMY^$=oWk8wdCLH_V=cvN`EK z=-lTFE#r(HX-!-fff;dbSxNYk&@O*{)QacneS0ZplHgYN@CUNL*tlp7d;h^!M1agW zCUF8DETE_#fpwcQ{0%d+BqcSQ;8NP9OOkh}zq0#on{Ot3F8<+U=ks&={VPsHc(^6m zZ9rd^M!y91p?J#O9Xo{3V1$o}T52hyJf6lMfwuPX?tNKfIv#ZA@G(B^zXB*JE<(qtIS(|?aJPx zAD!x_EYcRF(X-b}1HN7wfyuWVg>nySxX@e#f)9e)j|;Rk|5ZH$S~sIFA5C1&P?aKK z%v~pIVW34?!BFF0XTQMZ|L5MRSUqfdlRT?^^BZWM*#MO1=%3tsq&zA4aoy}qk(*cN zguxG`^qHCZ=s(M%?~5+JTvF9Us&f2%_wX)z&YOpax9Y#PvQ9*XcRk$F{vIG*pJUEn z8*gSO{8x&7H~wzV^3_}N`EN5`#z#%?Gd_C=sDhySj=U~^iBsnlO|NY8goa<~WTNztv|Jf}SM+5B*Tbb-fhb(Wbe@uy|jpX4OpT6kv@J;LbD_m>ke`WVu zuAitI{`Lc`P)SlJ&Dknr26rI&|1W6{|L<}vf<-4ArP8p=d4fSbU)geSfYVKp2vBMQ zsxIy>nhan_F|M2;Ie|CM-z0|@uRP=&qnnyHj!!;Ic}H4zX|^p)ltT_Frg7QfjDOQB z+Fu$i_tAx3v2;l@V7rRUN4tC#J|n#IaLonwSPg-c3hHRlt!M>5g>%8n>NOCE3U5&H zKM55es{j78Xc7i00~Q;Bi6jW7tq3@NWFS8|@hBrj96< z{#xklj>Fd`R4x+wm%A{Ts0pt}2Ihq_=N%qgBC(smr7zN+6&wPja{yT!*VdOJmI#Re z(m8+x5Ws9ROXnXyH{a*y`A_ah!f!$WLkK?(VCMa;Q9)GP8%0vM$Ul*Nv^9Q?3+^EP zmli&_qdSgSJP3l^3Hg@(MDIv-8e{gF|^>Hmv?hP$9Kd zG$X$Z!7RL(zATnHMi%IsBIqCfO)^o^tarqRBP7a}v1Za{!cXJ*aceQjOB!?7GWPLX zfO*LZ*M1{N-B`d0uWgi01x@&8eW@Q*a}Q2=`NNfHqcSL6tk3=D*_($oH(n#DAEKxr z{M5+}`cV9lDaYO2U7k*tFjPh{`E%q~7lmFRaHZ@Az!qS9sxw{%UeunPkFOq;@|ZoO z1rdL{XT~gwblyG;61p(XwBcDNRzYmeP3c(lRVH3x=-z(^SpKa&52SB2Oqy%+k#zY& zHn!Ruv6bpUgO`p=2882C!|tHDY89F<8JjIsft$CMj~yqcdGe+8 z64w2BL5FxMEYSl(YN<;_Z>4{~ zyNvT1iPwz9^fN11ohVv#z3wRrWku&ooe!qKkIoUU(OAriA_B17bq4T9{EWHL`X|SP zPOcBqZs2n<@syDrc_4xsead}|Jy$CjXHrS=-LG?n!uX;#6YEOrm4eCJn7spucdj1; z^lM|R=NE^S8e)8QI#ZfGL9KM}WihFXpGRjPD4GmwL4CTPlQ$*It0Z{5Wo#KAAwTf4 z!D)RwX7zP|BqJ##=JOvl&lAdGDeqrER>XF6;+4pOLD8c_La;bVN+S^AF693cBY6AE zEH!<|=6u4&T77%ya>lQQs|&p8=#O9!Q}A*?>n-5H7fR0qjNjXtueJZhg9?E?jWW_e zkbD35G3lKfWukwm6kh`FiDJb&MT89Gdl4S6Uje7&db#085Jf=AdK z0jHj-Ex>LlT*i+Dco)@^JuXB-f6pYeP6+94Xs_S#(>F3>=0rX*zn!EePFO1XKaqHn zfzL?0fFPMy#7@cGaRE9F7@e^qF2Z-0%HJMT6uij!(Omv{o;wZ@*f>DBWIji7RTyYc zBy|$w<8^Vjedy>{g_O#ivBM$!xbdQYJW1XHPa6GZ0xF1Gg49(!DYOvHH_5M&vVmn7 zpfRd5t|2*Hi?@s{597a73_QEdKeY0*+omz-TX5lHgEs;KsDbd7dHpaAq~Q#VX}-g% z-%RXA*~o~If09&S9~r=^vNs`#ODDA8F@j-Zm=e6Sr>taO!MpRZl5UDg=x;{OLRlpT z5F0?kg8V(s|KTfxnJ;#!+(6@mq<20nq{EtOUd+w~NW}?AesN4HPvM1&Bm@dtqCIkJ z-09Fk%{)7=`SIgKCtsMI&7ZSE+_bgO19e)L&VezO1^gqY2Y%I6#2>o^spGj)K8E;- z%K^)8)-|_DPkENzIF#OZGUtf@oQvy0fm{kcuo0WBcRWduNDDJ-tZl6UF_KWn8oLDe zrY$1yM&@~2L@M1_CDF#PG9rX}tnvhKUA;rB>ll((a=40G%>=;Q5AEerXx?3`QqOL> zB*p+GL`eK_<;QPHG?sQCHaG!6p08RLaF||W*1_7|xIP4|Y`shA;)=8A%=rL8j#!10 z{@r!G)B-S@LkBjP645Fg2uB4rV&l8sL-yF=JVA(N47;yBF*FGZrRTF6OpEDgHotO~ z5Ar;{SitH)9o0S!Tyq1-#br4zO{E5;K6`KK#o_txQJn2*r?UuWk-j;UUL>hf7|{#l|G5gw&zah%mbvtL z3{RQwnv84J@Bb_c9VB4x z&|1vDF{;Oz)%L6~`P^JtIHD&=I`El*eMR>H5K9zdj|tDi_-4Fe`I>f~0s-zyEZur# zevVxZ{L(u*89mU9#0;$ygQ&oR!Q=|SJ7RM7wxCR)ygk{p_Jtmp7`X$JTQ;>fDL&m_ z`f`%>RSJHIr7nmS`vlAxR1;7B9PBxrg0nn0_-PlBp@`6weH+=jN>!} z1O6t80JO#24}awzg1OX#npm;yYl_BlMU2g(gcFb23{1r0X4D>_p@y#rw^Wc{+W3oT(b`Z=m5Epvln`y*XO?7>2HZ>zK`olL$1A z1BVd;=&go*AV&PR*_-T*_k2~wbhkKW0rzs|y7qF#Vopkl7l7xLJ*xATXhm zpV%J$R+uCKm^N&**DL3@>y`bb_2ydSF72Ef<$2B-E3OM0WiSQ|p&Y9*Wp37b;*LHC z6|I`OG-qzBx6WSg2M%&)9++;Ay!5h}H?HUMe(m1?>#PtZ-I&*8gk(6P+cACv zM3C@7dZ{$=ZUIj{qTxZlBJ0y{;3QvJbg}EN2w&&Y8lhfa4S0S2?S5t7Z(Xt;c`kO^ z{=P4BKD_jLCUbGgr$LTa-g}mNVc9u71ogBa#~bFsnKt%d%>V<&TSpnTnj?)(vZZ*& z9Yjc}Z^m!VUj+;!{yAvR+)mY(9736InmmJpl*)`!?FY6M`VyURFL%GhoGcxTMmI3V zPgGh13hNLH1NY#7X&;UadF3fJU5Of09L~sZV7@}(NX!@#!%3fR@^D0DWoR_fiQ*rj zysiz#gh0|y*J1_Q%+o>cmpY{DH4Li2zO*Fy#q|2j}H-xjc}q*sA| zLY#pt2O(WWUZ%5+8M4C6=k{~>#zU_00kwEYLYQ=O%m$?VQYYR?O|aQ03zM%=3sUs%@L>tdJN<2AP>_20CB#!m2jpQh`Yz?Lw^zc8{*C0x*qsfMj38Oad^fe_;r0 z19%_SJP!JB*P8okD0ww~5eH;tz5j~i6%xhVCe}7k!8dl0pfIj;5oWAbPRWk`n}@bz zJbKm!d8euOO*))D)>&mgL2lggdJuCQ=)Tc;{cTUN8*wZ{Pd{!PGlUB_St^ZG!mD18mOic=j{Sks~hE>dWY z_g|Cw_h^eNc7H843}cwtZ`)$ZedRMEisjwrFjChyGH39sd2u~{Z^Gh>`M$_4ru`xb z%9K?vsH2AG>E}?4EE~C92xhvL#a3%?V|2yH*PDG?@Mrtc)L_VjSDtx8#erJQ%WDM3 zgvD0>+1o#NQfo@BneCXtOE&@}?#rv+$6Wc^OwzZa^micvOyC0dI5cWJ?r@4pC$->I8+N%u>G*F&){a|xZgnwuvYeV}FHdk;P&#maToqAXy&I=(-d4uxGH26}n;Sxh_`57jYvZ;zqBlj5XT_nI@812( z$zYU@xer)Bv>CW}Pgg{ce8EaX-n}^rF69}oI(5q}Z_1e*K1Jng(uL{&7KFU}pt?Di z(6PB7QGZ7r_2SpCi0%BJjDc#-6eII3(Ywi^+d=8fo@++k?-o@Ji~ayc$isJ-n@{8T zZ3Q=MP zF2viu%L8;=<3Y`VC*{spej}p%02^}v8x%pvssG$7qNy z_no)^!KUA#89V5@s0-ZpJS`jf!0%e2h|mUwSD7;oW=s@nipMqmJaQ8F3rIcoZ#X2? zIlKD}*D6H>SxDZ?-(9wY2D{ddK6n(s7SKgp$PCOs-xs(j=JW4;Kqa3OsV$z}6l<=l z8wE_C{H-IB)nDzIK@6W>TX(hQtOzk_^(N(hR=SwfhgZN45`f6hV_;$NK#?KxrmSef ztd1%f($nRd!q~pzvLU)KWkk_c8@w2Fjc4wR)cSsg761a-j}&`!EAa82Zt{VR>&!hNE*Oa94X*(<>)%+@tnp2$WOjQR z->Su+Mt(JBeU=2QN8Q zM-_Jm(BXrufCet_Ay&hJC(bhPuczt>#Xr*$0Ucu5?C$gk&z{|uG$g?{uh*?28L;`^ z{^o%#KPoAIp2Eut6SRD-wfU_(V8BWOK6R>o2i6qEkAoD#MV>&#oY%aydb`zX;FmLCy!$7P;i@8N^)qzP~x!l!8%_K5RM{*D~~si3(BUFdA>%f zuWv3Mm(c$zoVv>as|bd?3rCKWOOon9<(@nIuhzai9_sJyTVqC(B_nJ0K~xAu$eJwK zLv}Gj$}X~#u@|y6lO;rktTWbRok^6CRAet?-^y+h&l%s}_rCk%d7eM+*ZmK#m-9Kx z=bZDo&bi*#`+8$A3%kyxHxSiwf;PePBv&$2^H2FT-Ou4C;R!l>O~n@mS@6=`r(D(T z0Ez%b_kmtNNPoZe!oOQTlEte#i!)MxT{EN7v1d+HyXs=Z_YQH%q;Isf=NWd;#M=b= zr{oCzP5Go^M}~RPY~qfYRD?B(7p#~A=T$1S5h_!z7M7)BSC?8_0K5iz;BSYy^t_f% zwtwL-rXMNfrT?@fA~e;&4x1{oxmK#5QkE@dfhK|+!>2#>pFWJxFOg8_wED~rG7?Ns z%B`#=A)N1|1{KW;FLQEe8OV?dYt3CxSq6hU+Z(U@G&8@f^Gb@)LWp$gffN&MLg%KF zkYyxUC%LRvwVppDF=yX8?_m*I3^6F(bfM@W>cU)?dKH^pSS@(-$H12c?fY@UFN`YE zfcERP40cId%b2@oiwy@}0QW-5OY{s4KjF-vv%x%R=F^jX$MOYTWy`cYFR+UIf`r02 zz7nQ%`Qf*2+`Ah%CCh4XO#!bAPe4zAD5+J(YvzQ`OnP)i_}snPc6m20lNaIxM{6HzU_3xk;ybc3fffS*24gC>Bg?WIvF)mu6`$ z{(Bcnjcz|btjJk(`9#6dDp7h}m1obi?KrK?jO2{!p?;&>dkEXo@Nkf}a1%}ROW}Jr z4cB|p!ctdO=#}q9S9YhxH+1TDjoGndFbKLGf?iHW@i)FEtkJ2yU+OP$wRHcb4lIQ8 zfud{XY{53uwhM;Ihy!6EG}ZImjZ+BOdDSn*eu6!`rg_IIuhgl(of&P7S{-r1U+fKI zcwwq@6{(6!QAIHdaRM&Emjg($PUyUgW#Vqs6()Pg>h8;gsXr$ z)~R_ONk7&~RdC&|#LCP`c_JBF_v72Qd+rLmmCFQTe%%L2gatSAYipu1R7Gq@N&sCX%w9v!FyIJD@SdTi;n9-?$IO>3OA`EZh za8CD}Sz;Wka8A=OC>solo$$Y#&3?W$9UnL>9lO5!qmP*8!1#gRwPaa}rl8phI7lE*#Pjk)$XtsV%yh`nGULur0rz{@Z!*?JCn5egl#R4ejJ?kZPjeMxeqC=drm7Q5?4HxT z+{M}1$p_bi!^I-z2RfA*qB<{P&)D1a9v?43q$5M8JuOA$cc(BN0{uVxQrUpPtAJXuQYxApx)TU#@YH6q)YKh zvAr0VEI>79HZU)p%AKZUFxy zA^Rxn{qC2w_Gc|sb!E+jCa*&8(7OjY#6Ig>D_E>1i9&Q|G!C&iNe>Ao1~y>MNWy%E zR0+bHmRQ$YjVq4$S=tN{6P}oMYbFOj`%}<3xI2y`on^410ZKnCvm&?ZR?Yzb7tJXAdLzu z-J3nX`tVOG_*%?U$}&l1Rwx%^T4Wlrdqx95brIx~7L5&6GrfpGn%5__0=|ByXuo&{ z*abAZCR1xf4oM`;m#Sq%nm#s$2SRVjNuGZsjji6C0LbUU#q(dRa3Zrral+zn3BhmK zr(aztflR{c_Pu@uZOKnpguY5Ml}YapqbWR#L%aa+agIvx{7!_3yyfQyM&3AY3WMut z!_N?f!kxK7q|H%3pDLb;cs?XS=CR46jSA9O*E*|Dwc$`4Z(S=(x1Tv?nw*cNyGB9Iu7#i zI=*wfvRa?F72jjZ)IyC`TvS`nJ{GY^JQEE9BwNcXizy2FCtSo8tfOar5~_a9UiUgL{FDjs{!i!UQ!xW zW*Zng)UAlM4vECLcs05nPj0XzMZ^=f*PrvYR)4_6yp4@t>m2Sg_duVdeV=u`la1>; z0EG}My+q?1*PrwCe*Wi~Pn}ku%x|GHblyLy0n}Dqpi_c~!uJ)udZDS(;?tE9(;Hk} z)j9mh+!j5g^PXLYlb$`A?df+8@EEwRFxy;rpjst4siOuqFea#({IxgPG;cNXG_>R* zuJsPE|8M{o7J+@|Y(a)xM)v8{+9G@cq?#Qg0(=~A8x||Sm^L_V0-m73FUfi2dDr2n zjXRYq=kRWj3mh1c57KhyXvG!V?D-`D>VE?Hyeos|Pn$-Dqx*vB6QZ8x^aD`_tgFjI zLvNtE28So8zgxOnba~&)NWij`{9Z`%x#ez(8fv;o4g_wYP)+1*zv-57KhA3Md*-qs zU{-M?Z=>5VspC|XxCawF>qaK*mW7>VL@gJV{e$$R1Z}y%+t9WK=P|5pFlXyp9DIZKTgWHI`z zn@xQG(R>&c4^K$&t&(wiMK|4YcO;(W+}t*%ROZ7`;G9ktJ~@xZ9^~v{c8iqsnLnd^3A@-$~Z!&5ggxw8kh{~DkS}rnJj9(m8sB)Clr3l z94mYJ#LoRaD*i#jRa!u`M;&`_9k&c5K-9^GCSS5YK6)+cP2-BIzzdGc-Eo1MVOu`Itgqh|a!e~1?@J-hT;v6AD>egv1vR}Z zYDB={G%rgJ(XNMtKVF*VYu#HbT~y`{fYnh0mU(aYSAGIy6Jv%75w%pcMTKm-Bh%b^ z9(aTkx9l@_cVT7)EgTW<J#BpA3JxA)=;s+7aT?^6Zn4DN#@QljtLWt)F0`f+xP;G{1!YCGG%n zm}v2io<*(ijEL#e)R4utOB+74WvEabyl!-F{B{=w9?EGQ%`B6;b*_~Ak24Hs@4LA%@Ml82yX^{sCr z#TA-?TX^Par)}=&eT}I(@mjO7j0$j#gg4D&wNbc5Q4D2!McP#LYc`NDOaDSAX)7%) zQne+o&j2ljb>-f|u;LDnsuO&i(@Yk-`>Dt4Hg<%8I+E9^;PJ-D)mKva%$5!J+BNjaYQRHe3~ z!Tqk#M{^x?|Fpztr6D~SBnU2Z!m#Q9<1otr0F{&wtiyar09ff9Po%+t*$a^B{RwQd z{uzo3{Lk~l%GANB-FC%Lv+P!{x5`prAN)LZ9Jz49LM;@xFhmBx(}N?2`~30=j?I^9 z7?G^&b`OH;)Bw(T6Mo7%xC}%=X)dESzR{XyyWI@Mv2uLVp&>FP6@aA&w$F>Md+Mbc zt4NlO-JPI1&BIz0W3LSi>L_F#U?8=fw?3Mu=9GV;`2AoLfZ-aTclW+zesZjy6V>P) zn3ov+d6hEUkVM0Wh^|6!_lkMZV*D%Z^owIx0kWkaW`RJG--M&-#%JYkYr>+bI z{h6k}xDl+?PZI>r2GD~#8WNnZX7^etD|8j`9JG-lk}VAv!OZ}upy(|13o~(igJ8X2 zTs!SU51GgQu`5PcVolSI6>_Nhte+(N2UJ^&oV8B@7g!)Lbvh@~&w}{r&H6|NAm-Hm zzylCCz-*t^L;(l(;Z|8rcJ~qFV6w!A0q%L4e^&ZDbW1(=5I(3)1(QsfXAqCaHCuJ& znASZnK5T%}hNOffZp$V6&S-P`cHqTLCr@}83<2fVy%5|p&_T-gLJtCbA39mB01QFNboKMWXO?{ zuK+J)KKnL@m^1j1{Y)Y-2@(fZ4cnKF)C42Pd9I*Zz89lelp#JK9KIIL5Z${!=%JAL+RN8aVk6Fg$wHfOC~5o;SmBzT_W4Fz$0*+85za*J1 z`lDl4nt7~f;y#bVoPW}pQ`zv-?lT8Z=}2m*yYE7BsNj(GfILL1oBb-+7XMhQ&zzmG zD=W*j(<>M00zX8fa5xU|oApOMx!#8Fete0({?RyVH6srFynJ zI|fyV52)Q7A5)qf&a23^K*+Nj@ASg*ByGyn`~kBi%Ij#?+S5|CpI=mIQ+k=hcghP~ zFy_FXLXm^-W^HOCifD}Ez|;xBF3weC#z?I23Q|~Jh71LO4~Y~cEKK*K%~5LqFgU?p zQ9;Y!FTS2*7oalarLBJsuJZJfBjKy$2v|Xve*6p zDVD8`+Bxgu$ISOerq=H5KCCM!Zi?O=~hy91L z_J3h`KBZKN{<{k0^dTSP{}{V2iRS$e>y!1SVo{GuXcz>(@ppe6KEwNbAY#6GeoN(S zt+HA}7&1wf5X6hT(K@aLe}Z3NlA0(TI!2w8Tw(W45K)$+b@eNLo9Xp*X%G}zNN~oi zP(#i71q&9x{)SJinJNKw$iZrz?IV!V1*T7%i=k0oyCu8;#aOb${iZ^jZo=ouo62hS zA*M+{D{HIlQ)oD`Bq+-FPY@r{rlmv+=nn>)%`2;-OqIY;nv)Rc?D_?PLZDKqFCRal zeec<^qwunl|H&|sqXQr>CY&C@0e+>aqQFl* z2qjlW@)(qcii#-ozg`ePx3ryBC{MO08*(Sr|M3Py5`4(OoSaI)VznvI9{fHnlB5+9 zaH-i;_ndO@>iCCiE(UC*y4#iuoIKGY@u(XkuiDK~>^%?hh5K)Q#br%x=7wChbNEv< z)%VDwf7W4WMP+idl22DzTA{CDYcwe{O@knAg>C2{8^(i%8tT@04JmXh^RW|*!62=q zLhGq)ugbXt$AJ*tQ1!Q_7kHOHn(;JQ@u;s+*vgD!W{G^Q?S?%DH5E$R&nF$3mdJ)5 zs~&6lvgC+G+;g9$&Ve*qWc{4H9QXVFWWbxTUsi+c4u;2RL~VN?8E9??9Wc!<>fz^H z>$jdaE8lr!K<>N5H=)rC3?u7p%VAFU-A)0Ew|-kcnZX^pIrwY!a%smO6>p`MBD0n{GH97}_Kao}c+b(t66*bVE=5_YPB6TiuSw_>SkgVOpX zhHtr(Q)c=}@mPQ&(Bg-yDpwuQ!1Z)65m?~^qY{(P7xn%$7rYArwB zG1yq0kEEMsHm`Hp}#Y`3J?kjCLF}|V5oXlwndA0D-(U)UcTLS zSTh;SzDrrX6-Op9D{Q?c>~N-hLg>7`>((R#8T@OK_$D50{Sv%tn8&N3&^#OVCHudd zUu1G4FA^IZa}9Z>Qyxx9cx>}k+T7e6b?|+8v?7b&_q)f+!nu;lEJ_VyzREz0PSE_U z-+0=D0e3~DqOrHYFiEt_=jpgW}!y%F5Se?L(XO9FL zzG+6tUfQhJ{kp&evMHXFIIxY|IW*f%^;90j@qN9o_KJCs%+yuHoW@l<9<|I>RRG>= z#*xV_9*e7}952rY)A&Ovsh;bP-^=-JZCjkxCaWN zs~VzyuB!{F8iX;GzN#9T;Wbe8i_+WG|NrOTdBC_f{dG25{IUix7F60A2I>`nM*4pM DSmM1o literal 0 HcmV?d00001