This workflow requires two operations: a grouping operation using the group_by
function and a summary operation using the summarise
/summarize
function. Here, we’ll compute two summary statistics: minimum delay time and maximum delay time.
library(dplyr)
%>%
df group_by(Weekday) %>%
- summarize(min_delay = min(Delay), max_delay = max(Delay))
# A tibble: 5 × 3
Weekday min_delay max_delay
@@ -546,10 +546,10 @@
This time, the data table has four variables. We are wanting to summarize by Quater
and Week
which leaves one variable, Direction
, that needs to be collapsed.
-
+
%>%
df2 group_by(Quarter, Week) %>%
- summarize(min_delay = min(Delay), max_delay = max(Delay))
+summarise(min_delay = min(Delay), max_delay = max(Delay))
# A tibble: 8 × 4
# Groups: Quarter [4]
diff --git a/docs/search.json b/docs/search.json
index fa1d6c52..5c97cd79 100755
--- a/docs/search.json
+++ b/docs/search.json
@@ -326,7 +326,7 @@
"href": "group_by.html#summarizing-data-by-group",
"title": "10 Grouping and summarizing",
"section": "10.1 Summarizing data by group",
- "text": "10.1 Summarizing data by group\nLet’s first create a dataframe listing the average delay time in minutes, by day of the week and by quarter, for Logan airport’s 2014 outbound flights.\n\ndf <- data.frame(\n Weekday = factor(rep(c(\"Mon\", \"Tues\", \"Wed\", \"Thurs\", \"Fri\"), each = 4), \n levels = c(\"Mon\", \"Tues\", \"Wed\", \"Thurs\", \"Fri\")),\n Quarter = paste0(\"Q\", rep(1:4, each = 5)), \n Delay = c(9.9, 5.4, 8.8, 6.9, 4.9, 9.7, 7.9, 5, 8.8, 11.1, 10.2, 9.3, 12.2,\n 10.2, 9.2, 9.7, 12.2, 8.1, 7.9, 5.6))\n\nThe goal will be to summarize the table by Weekday as shown in the following graphic.\n\nThe data table has three variables: Weekday, Quarter and Delay. Delay is the value we will summarize which leaves us with one variable to collapse: Quarter. In doing so, we will compute the Delay statistics for all quarters associated with a unique Weekday value.\nThis workflow requires two operations: a grouping operation using the group_by function and a summary operation using the summarise function. Here, we’ll compute two summary statistics: minimum delay time and maximum delay time.\n\nlibrary(dplyr)\n\ndf %>% \n group_by(Weekday) %>% \n summarize(min_delay = min(Delay), max_delay = max(Delay))\n\n# A tibble: 5 × 3\n Weekday min_delay max_delay\n <fct> <dbl> <dbl>\n1 Mon 5.4 9.9\n2 Tues 4.9 9.7\n3 Wed 8.8 11.1\n4 Thurs 9.2 12.2\n5 Fri 5.6 12.2\n\n\nNote that the weekday follows the chronological order as defined in the Weekday factor.\nYou’ll also note that the output is a tibble. This data class is discussed at the end of this page.\n\n10.1.1 Grouping by multiple variables\nYou can group by more than one variable. For example, let’s build another dataframe listing the average delay time in minutes, by quarter, by weekend/weekday and by inbound/outbound status for Logan airport’s 2014 outbound flights.\n\ndf2 <- data.frame(\n Quarter = paste0(\"Q\", rep(1:4, each = 4)), \n Week = rep(c(\"Weekday\", \"Weekend\"), each=2, times=4),\n Direction = rep(c(\"Inbound\", \"Outbound\"), times=8),\n Delay = c(10.8, 9.7, 15.5, 10.4, 11.8, 8.9, 5.5, \n 3.3, 10.6, 8.8, 6.6, 5.2, 9.1, 7.3, 5.3, 4.4))\n\nThe goal will be to summarize the delay time by Quarter and by Week type as shown in the following graphic.\n\nThis time, the data table has four variables. We are wanting to summarize by Quater and Week which leaves one variable, Direction, that needs to be collapsed.\n\ndf2 %>% \n group_by(Quarter, Week) %>% \n summarize(min_delay = min(Delay), max_delay = max(Delay))\n\n# A tibble: 8 × 4\n# Groups: Quarter [4]\n Quarter Week min_delay max_delay\n <chr> <chr> <dbl> <dbl>\n1 Q1 Weekday 9.7 10.8\n2 Q1 Weekend 10.4 15.5\n3 Q2 Weekday 8.9 11.8\n4 Q2 Weekend 3.3 5.5\n5 Q3 Weekday 8.8 10.6\n6 Q3 Weekend 5.2 6.6\n7 Q4 Weekday 7.3 9.1\n8 Q4 Weekend 4.4 5.3\n\n\nThe following section demonstrates other grouping/summarizing operations on a larger dataset."
+ "text": "10.1 Summarizing data by group\nLet’s first create a dataframe listing the average delay time in minutes, by day of the week and by quarter, for Logan airport’s 2014 outbound flights.\n\ndf <- data.frame(\n Weekday = factor(rep(c(\"Mon\", \"Tues\", \"Wed\", \"Thurs\", \"Fri\"), each = 4), \n levels = c(\"Mon\", \"Tues\", \"Wed\", \"Thurs\", \"Fri\")),\n Quarter = paste0(\"Q\", rep(1:4, each = 5)), \n Delay = c(9.9, 5.4, 8.8, 6.9, 4.9, 9.7, 7.9, 5, 8.8, 11.1, 10.2, 9.3, 12.2,\n 10.2, 9.2, 9.7, 12.2, 8.1, 7.9, 5.6))\n\nThe goal will be to summarize the table by Weekday as shown in the following graphic.\n\nThe data table has three variables: Weekday, Quarter and Delay. Delay is the value we will summarize which leaves us with one variable to collapse: Quarter. In doing so, we will compute the Delay statistics for all quarters associated with a unique Weekday value.\nThis workflow requires two operations: a grouping operation using the group_by function and a summary operation using the summarise/summarize function. Here, we’ll compute two summary statistics: minimum delay time and maximum delay time.\n\nlibrary(dplyr)\n\ndf %>% \n group_by(Weekday) %>% \n summarise(min_delay = min(Delay), max_delay = max(Delay))\n\n# A tibble: 5 × 3\n Weekday min_delay max_delay\n <fct> <dbl> <dbl>\n1 Mon 5.4 9.9\n2 Tues 4.9 9.7\n3 Wed 8.8 11.1\n4 Thurs 9.2 12.2\n5 Fri 5.6 12.2\n\n\nNote that the weekday follows the chronological order as defined in the Weekday factor.\nYou’ll also note that the output is a tibble. This data class is discussed at the end of this page.\n\n10.1.1 Grouping by multiple variables\nYou can group by more than one variable. For example, let’s build another dataframe listing the average delay time in minutes, by quarter, by weekend/weekday and by inbound/outbound status for Logan airport’s 2014 outbound flights.\n\ndf2 <- data.frame(\n Quarter = paste0(\"Q\", rep(1:4, each = 4)), \n Week = rep(c(\"Weekday\", \"Weekend\"), each=2, times=4),\n Direction = rep(c(\"Inbound\", \"Outbound\"), times=8),\n Delay = c(10.8, 9.7, 15.5, 10.4, 11.8, 8.9, 5.5, \n 3.3, 10.6, 8.8, 6.6, 5.2, 9.1, 7.3, 5.3, 4.4))\n\nThe goal will be to summarize the delay time by Quarter and by Week type as shown in the following graphic.\n\nThis time, the data table has four variables. We are wanting to summarize by Quater and Week which leaves one variable, Direction, that needs to be collapsed.\n\ndf2 %>% \n group_by(Quarter, Week) %>% \n summarise(min_delay = min(Delay), max_delay = max(Delay))\n\n# A tibble: 8 × 4\n# Groups: Quarter [4]\n Quarter Week min_delay max_delay\n <chr> <chr> <dbl> <dbl>\n1 Q1 Weekday 9.7 10.8\n2 Q1 Weekend 10.4 15.5\n3 Q2 Weekday 8.9 11.8\n4 Q2 Weekend 3.3 5.5\n5 Q3 Weekday 8.8 10.6\n6 Q3 Weekend 5.2 6.6\n7 Q4 Weekday 7.3 9.1\n8 Q4 Weekend 4.4 5.3\n\n\nThe following section demonstrates other grouping/summarizing operations on a larger dataset."
},
{
"objectID": "group_by.html#a-working-example",
diff --git a/group_by.qmd b/group_by.qmd
index 1ad6a9cf..9926e941 100644
--- a/group_by.qmd
+++ b/group_by.qmd
@@ -30,14 +30,14 @@ The goal will be to summarize the table by `Weekday` as shown in the following g
The data table has three variables: `Weekday`, `Quarter` and `Delay`. `Delay` is the value we will summarize which leaves us with one variable to *collapse*: `Quarter`. In doing so, we will compute the `Delay` statistics for all quarters associated with a unique `Weekday` value.
-This workflow requires two operations: a grouping operation using the `group_by` function and a summary operation using the `summarise` function. Here, we'll compute two summary statistics: minimum delay time and maximum delay time.
+This workflow requires two operations: a grouping operation using the `group_by` function and a summary operation using the `summarise`/`summarize` function. Here, we'll compute two summary statistics: minimum delay time and maximum delay time.
```{r}
library(dplyr)
df %>%
group_by(Weekday) %>%
- summarize(min_delay = min(Delay), max_delay = max(Delay))
+ summarise(min_delay = min(Delay), max_delay = max(Delay))
```
Note that the weekday follows the chronological order as defined in the `Weekday` factor.
@@ -66,7 +66,7 @@ This time, the data table has four variables. We are wanting to summarize by `Qu
```{r}
df2 %>%
group_by(Quarter, Week) %>%
- summarize(min_delay = min(Delay), max_delay = max(Delay))
+ summarise(min_delay = min(Delay), max_delay = max(Delay))
```
The following section demonstrates other grouping/summarizing operations on a larger dataset.
diff --git a/group_by_cache/html/unnamed-chunk-1_9fb98a5adc80a23c31eedbe88b93a06a.RData b/group_by_cache/html/unnamed-chunk-1_9fb98a5adc80a23c31eedbe88b93a06a.RData
deleted file mode 100644
index cf64d756b843397beaf8ed3eb7f76d0873ad0f9e..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001
literal 164
zcmV;V09*ebiwFP!000001`BeDFy@NjVqjokW?*4vVqj(kG8tGyL)>&N7#LWXfE-2!
z76wir?W&hvlwVp9pHvy2oS2-Es-IDko1XquRk
zY+;aSWSneln3|fBlxks-WNDmeV3r6pNC3&u7%M9)g=)Rz)SMiJjKty$TXkw!qF&3z
S1vD6F{yzXz5I9%i0001M%tGt{
diff --git a/group_by_cache/html/unnamed-chunk-1_9fb98a5adc80a23c31eedbe88b93a06a.rdb b/group_by_cache/html/unnamed-chunk-1_9fb98a5adc80a23c31eedbe88b93a06a.rdb
deleted file mode 100644
index 9fd2f85dea6f0bf038332de1bf1ddac0a8fbf453..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001
literal 1370
zcmV-g1*Q4`00@0}oZVGhZ__XoPMTh}icJiVc;Vu0n)YpSn$(eXpyDu%JaSr0Hwa@XA4yv03EFUJb7A>a5$p(i9w
zL790rrb}%nF~n*l;uDzZ)RI-=s`g#XsN$0X#5N%NBMf2N7h%AeujJ+|7L3Yk*T^Sb
zLYqrf06vn#q!2CmYC%TBKznL5bv^UIf7kw*%1HhV(W`
zN5o}ScTV1(EX|LS?av3LtIRg6(XVCt+1mgUTH?@Be{8gIr8V$QoGM$}+Sb~}-f
zEZ>GJYvnXhTSD)E7|)L*YaPjAgWh&Uuhl*Td1hC!%d&iZCXwr`?*!G&4V
z#_?G;4D2pV|43b5%2mAmxF>*6@X*U>jHKX0ud@Vz(d9-
z9%@~S7<`J}3qsK+5Uo?x`WVp=UE@%;3}%E0(S7pLP#fiQkek-ud-X3!VEw^gpjpn6
zeWxCJ(eBWp;hxpN1x#2hJ#-e0&(~Z3Wd8MJt$z2j*y^XrS{tq|E<2ZL$|iJXxWcbbO8+W|D!EsUuB(8h5bS9DHe7wKOVgNNG;M2lM=#%
zIiYxU{xo;Qf|I6e;-rN$mJ%m^pZ9q`ZGY)mmStNzcGI$3
z`qOHC{&eLGEWM(Ce(SlZ=Z3Xob<=sSU%&Kor=NCF@I$|v#$tz(k$_^6i&o3MDI8IJ
zIadN2^qp^5jF`kJC|h2RyEV6+7-TKP=|U`dT1i>4%zYaZtmvWuX&8|G85EK0vnZg%
zS8}r#_ZrRDj^R%lf+Q@e0k=4m3fBl4&kd69wOgjSrwHL!Cd$q{$WyXcNli$i6}S|q
zEiu>A!=ejrPFf)DCUrqXFvM~x=p_Y(65I6#rWK&A!*fwk!@mcmi=cvTAhaRF&NfP$
z#j1wSK6!hxUVfZx|30V=E>ubwd?#rt
zoZA=*#T-OrigUPNK9-V1<2Of2#Q3P1opm}h--l8ysK%RigP79cj371H;@vK1lBi`b
zmSUwiP+Lsz3N{-`j{RJ=zvi!IU1jPCLhE
z*)XtOoE}I+U&=DRaX4ZEVc~(7d=4a|1cBLvC=3os$eBDtwOH%QoPrBMApPG8RJT*x2rKAMtm;9&$MwF1W9;R(Y*GCv
csZlssDHQMcdZPlXSmYPnqx%#74^Hb^=3?fkP5=M^
diff --git a/group_by_cache/html/unnamed-chunk-1_9fb98a5adc80a23c31eedbe88b93a06a.rdx b/group_by_cache/html/unnamed-chunk-1_9fb98a5adc80a23c31eedbe88b93a06a.rdx
deleted file mode 100644
index 184258b476e73f1486a28f428b51a6cc47dfd986..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001
literal 158
zcmV;P0Ac?hiwFP!00000231W<3c@fDeN9rN0YUH_?mdAA5QXj})=@YCYU`gZUX0$oz+
M7ctB&F7*Ha0HOXtv;Y7A
diff --git a/group_by_cache/html/unnamed-chunk-2_cd2338c52672295a1db060b6e3202081.RData b/group_by_cache/html/unnamed-chunk-2_cd2338c52672295a1db060b6e3202081.RData
index c124d33ab1799e9670526dced0ea14465edd26a1..356703ed6890e1439a8cc59be8c495fb69aa327f 100644
GIT binary patch
delta 760
zcmVBwY{kmUoH-EID7Yn21iy#QVg^LJd
zAc8XL)gHo0?b2S@b$F)IOgWg!l)=fR{nb1dJ!ARO?kX5E0x(q2`JO?cxDhmGPAWJe
zQqpADt16L^DnJZMsW;}j3Z$Aa(yN|RtfBzGOmXm%#wiyHCaMFfyEf>mh(N3tdL_(c
zPI5&>#>#<=4u6w?k%8(U&bSDG7>4jwyR`-K;kR0^mo0}7jZBsjoscCJ-*0Hy#jBvT
z9|wf1vq6B0lJ=wrtG{aJhPqB?5dFC$tqQR2UQHkNDzD#lB)>zmWV)ywz$fp;p2kX}5bF;B3!m!=20Yk8kIg3LSi
z&S~N>8VV>T-nQHHMkeONu@cam`*Y?FR>H2B_+-Ibc|aM_^VNJT-`R6(?l-w4kq>+R
z?Q1hPrC)PxJGX4y<$3s_U=bM1rO&_dYE%84;47luc3Qw@@j~
zF4lFC`$%<_!C~%l12Wb(!O3D8roFuo>T~l8^fA%3f=PlVvlwq=y1~q!ZBqU>R6qU?
q)oYK-T(1*;8_FWiXV+$2B#T5J8O?Gr_?rP*SHA&Yk>3gT2mk=HICx3`
delta 758
zcmVT&TMD2L;Q6%yKQJ2!C;6NB00XDOV0Un
z&hf!n(>}8;%PLvr(z;cu=%rOT{r16WTUL2pZ`Q1`wV~%jcPMz4_QOdZK@<@$QZe(g
zB!Mx(4vMm5*E-+$kN4II{Y>fsJ)`gOnFZhvS)uNFqj7eNq!3l|Z_
zKm=vft38I3+NHg)>+npanQ}0dDT9+s`@4BAddBjl-BmDT1YoG3^D~1&aU*EXoK$c`
zq@>BPS5+b-Re%_jQg6(46-YH#lB)>zmWV)yt3jfp;p2kX}5bG57Y;^g#D4?+ZtedB@&4
zO&mr;0ma1IcAMVFM0_|_0(x_A&fNS;&=nJ%Echx9C?k5lnvdl>dv4ABA(tfbVb8yO
zZRV!*XRdAMmW{hS3%_(Ulqd6TNeYxpO>;O~KW~#r&{XB#r$r_sLh_TcDarg6Dy7NA
zx+-!Xsje|N%w29k#`-2WSxm#Uvll{rX?}n{Cc08ENzh~#&dAt#x`P$b-5clv=Nb%jBFm(
zI8$7jpgox8)BMOj8-F#wgEtpvbgofp+LXLm$%3A@?IjqXcPj>h-qTkuCxR~(s5L#w
zk7*4{fmd%v0d;&6N07#SRtXL2fGvIE0&RYG(Z@2kEq~U%2_KpJ_h>^CeYn?|-`vr8
z9bW7`d?npyq80N~4H|Iuo@R=-#8ad8QQtOU6V5%
SI{MGtjKkx18TbjR^tLgFwXCUKj*%&ehlRwWV8
zKM$lVsY)~saN}Uv^>h5{_Z~AsNJ7#iCdt5-WH5iYo}AiZY$LW{UT1!DOXpR1
zvDfg8bf1Y<%uiKlz}0)2DP9}Tu1zCQ7l^)-76>bkf-%5~3Z+MfHLw!ao^k|2EZXCA
zC<7CqLm3VVQ;Ee2Ym_ULtl8eU)6tRO>%z2>|HjkXzkAy8^jMD%>8an&UEPK
QKl3sUkKbkACj{N3Mve@h;s5{u
diff --git a/group_by_cache/html/unnamed-chunk-2_cd2338c52672295a1db060b6e3202081.rdx b/group_by_cache/html/unnamed-chunk-2_cd2338c52672295a1db060b6e3202081.rdx
index 803e59c1a96ad55535d30259f31f36074939af85..17a55d0aac89d0e8ebf8d6583dbae883ab5ae029 100644
GIT binary patch
delta 22
ecmX@hc$RU340GOGtBLZX
delta 22
ecmX@hc$RU346~lB^+fq)9EW-CX-P9OFaQ8i83rQ&
diff --git a/group_by_cache/html/unnamed-chunk-4_d81779338be38082a9993debd3a81a92.RData b/group_by_cache/html/unnamed-chunk-4_d81779338be38082a9993debd3a81a92.RData
deleted file mode 100644
index c06aec452ca18dc96ae5474e1bf6cfa87f4dcb9f..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001
literal 384
zcmV-`0e}7#1ml%K3n^P)_<6^b{NlQvn@$rFRgk@E_OH!+=L~$
z!dGFQv@zy$Xbziz0ZyjMs}Kv$^7e^XXHmqG;9V$D5IbCiEQbL|tc(iWzJ-Ww$~xN|
z>+QlH<8nH6nWd{Nh08=;r(B}l{_G7rKpMDiC~WA$*C!a#{&*cI&Chm{?a#e*2#4r%
zHyoA-Yw)y;p^PpukBAbAb(mygU9u*jXSRn8>B}#AEn*#jrV$OBF!8gbY^Fp%vO3Xm
e7sg5O$M^n%Ee4fuQY`rietrQ}qNj9z0ssK*+P6Ib
diff --git a/group_by_cache/html/unnamed-chunk-4_db15eeb225ba52d8d0d6c4ebaf271c32.RData b/group_by_cache/html/unnamed-chunk-4_db15eeb225ba52d8d0d6c4ebaf271c32.RData
new file mode 100644
index 0000000000000000000000000000000000000000..c82e414d2ca1d4f7ef318fcce56529191f3a6893
GIT binary patch
literal 383
zcmV-_0f7D=iwFP!000002CY(EYr-%Tjb9JT(|*E*Au6nKjjdm(FmS%@WjN+rO`5nC
z+baD4iwOG{`$79vdl^f$TKB#SA?Mzcdrof1%XHDf3yct|plYRzDm4XB?R7rW`Uq9a
zDk-5Vx>5TRc@HzPnmJ*6h
dn1${i-|iKg4XWNGTj~@1`~vxG+dO^(000MawJ87q
literal 0
HcmV?d00001
diff --git a/group_by_cache/html/unnamed-chunk-4_d81779338be38082a9993debd3a81a92.rdb b/group_by_cache/html/unnamed-chunk-4_db15eeb225ba52d8d0d6c4ebaf271c32.rdb
similarity index 100%
rename from group_by_cache/html/unnamed-chunk-4_d81779338be38082a9993debd3a81a92.rdb
rename to group_by_cache/html/unnamed-chunk-4_db15eeb225ba52d8d0d6c4ebaf271c32.rdb
diff --git a/group_by_cache/html/unnamed-chunk-4_d81779338be38082a9993debd3a81a92.rdx b/group_by_cache/html/unnamed-chunk-4_db15eeb225ba52d8d0d6c4ebaf271c32.rdx
similarity index 100%
rename from group_by_cache/html/unnamed-chunk-4_d81779338be38082a9993debd3a81a92.rdx
rename to group_by_cache/html/unnamed-chunk-4_db15eeb225ba52d8d0d6c4ebaf271c32.rdx
diff --git a/group_by_cache/html/unnamed-chunk-6_6de698b8961425ae8b983a1493c2e376.RData b/group_by_cache/html/unnamed-chunk-6_6de698b8961425ae8b983a1493c2e376.RData
new file mode 100644
index 0000000000000000000000000000000000000000..aa3e22ca16a64b31cf3b12f2577824c7acfb2770
GIT binary patch
literal 429
zcmV;e0aE@SiwFP!000002Cb6cO2aS|#^W|G%$1LDK*SAfW}CK4iyH`2uPcgz$d)$I
z4%<%p2NW6j7QTnC;CqSb*0m0HX`tjgIUm38g!F2BNAVp-2(?kC-9qhMCDHE9^@YX|
z>aF1(XKMiGQO3x`Ml5puM^csiZFlN6R{Etm_rz~a$>
z!_gsNfOSgOD|njA^cZfXeD1B=SrNxPon^8c&ytCd5r2arDBT^Gx_1mQe{IhBYjxf$
zV=-uG1h)N6_r$Iu(92Y82MN(^s96B@|(`95Pr5{e&=VY`A11>YiCCi&&U~XKZ6J
z;#4kOvCIuu%>qhjrAn3s9^KAjb+(P|4OhdmNEHFLat**Ux3LCwqC<4dHe3zMT;EYq
X>GG-6tCpYodw+fbE~mXtHv<3wt~$*x
literal 0
HcmV?d00001
diff --git a/group_by_cache/html/unnamed-chunk-6_f31d24f5b42ab4b84a1c2090a1293f36.rdb b/group_by_cache/html/unnamed-chunk-6_6de698b8961425ae8b983a1493c2e376.rdb
similarity index 100%
rename from group_by_cache/html/unnamed-chunk-6_f31d24f5b42ab4b84a1c2090a1293f36.rdb
rename to group_by_cache/html/unnamed-chunk-6_6de698b8961425ae8b983a1493c2e376.rdb
diff --git a/group_by_cache/html/unnamed-chunk-6_f31d24f5b42ab4b84a1c2090a1293f36.rdx b/group_by_cache/html/unnamed-chunk-6_6de698b8961425ae8b983a1493c2e376.rdx
similarity index 100%
rename from group_by_cache/html/unnamed-chunk-6_f31d24f5b42ab4b84a1c2090a1293f36.rdx
rename to group_by_cache/html/unnamed-chunk-6_6de698b8961425ae8b983a1493c2e376.rdx
diff --git a/group_by_cache/html/unnamed-chunk-6_f31d24f5b42ab4b84a1c2090a1293f36.RData b/group_by_cache/html/unnamed-chunk-6_f31d24f5b42ab4b84a1c2090a1293f36.RData
deleted file mode 100644
index de730495382e6eb0c4ae8e7290e0224194c2ad2b..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001
literal 430
zcmV;f0a5-RiwFP!000002Cb6OO2aS|hT}Fb%$1LDK*SAfT${9Oiw=aT*A+!UWJ{aO
z4%<$;7Su8DEqo7O!S@o=t!o|Z(m=_7a(=%5g!FoFPw_oQ2sKfw*+9)*CDHEf&821|
z)M}_=2er_i+AqjcI?Z2({@XC%K`2kcERIg{B;m0XS`g;Rvt|v)R2K#tn?5tR&wQJ4
zJutdXm+OW@$JA1w{UsEAC}`u$bzPW~Kt>USd={P^{YS{r0^`wWG$$!6(ONJSa)HIz
zfW!VFV1RW>+sk>H$@CcRqK1E1`FZjg1YLOhnaVr80?$DR{;<
zmQ9?}r7ITOa8)dzgqEscnc&gwEW66Ku(jc;StcnXz*4Rrcx)T1S0y?`$M%M+X0i1h
Y6_qZZO1*0FslWH<7sqUEY&Qb{01b21mH+?%