forked from mr-Mojo/NICER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
145 lines (116 loc) · 4.77 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import sys
from collections.abc import Iterable
import numpy as np
import rawpy
import torch
import torchvision.transforms as transforms
from PIL import Image
from skimage.transform import resize
import config
def error_callback(caller):
if caller in ['mae', 'mse', 'mae_channelwise', 'ssim', 'psnr']:
sys.exit("Exit - " + caller + " - shapes do not match")
elif caller is 'filter_index' or caller is 'filter_value':
sys.exit("given " + caller + " cannot be resolved")
elif caller is 'forward_conv':
sys.exit("Convolution does not preserve resolution - shape mismatch in model forward")
elif caller is 'raw_img':
sys.exit("Can only output 8 or 16 bit images")
elif caller is 'emd_loss':
sys.exit("Distribution shapes do not match in EMD loss")
elif caller is 'filter_length_l2loss':
sys.exit("Filter lengths do not match.")
elif caller is 'optimizer':
sys.exit("Illegal optimizer. Use SGD or ADAM.")
nima_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
hd_transform = transforms.Compose([ # used before saving the final image, to avoid out of memory errors
transforms.Resize(config.final_size), # smaller edge will be matched to this
transforms.ToTensor()
])
def load_pil_img(path):
img = Image.open(path)
return img
def get_tensor_mean_as_tensor(nima_distribution): # returns a tensor!
out = nima_distribution.view(10, 1)
mean = 0.0
for j, e in enumerate(out, 1):
mean += j * e
return mean
def get_tensor_mean_as_float(nima_distribution): # returns a float!
tensor_result = get_tensor_mean_as_tensor(nima_distribution)
return tensor_result.item()
def print_msg(message, level):
if level <= config.verbosity:
print(message)
def get_filter_index(filter_name):
if filter_name == 'sat':
return 0
elif filter_name == 'con':
return 1
elif filter_name == 'bri':
return 2
elif filter_name == 'sha':
return 3
elif filter_name == 'hig':
return 4
elif filter_name == 'llf':
return 5
elif filter_name == 'nld':
return 6
elif filter_name == 'exp':
return 7
else:
error_callback('filter_index')
def read_raw_img(path):
with rawpy.imread(path) as raw:
rgb = raw.postprocess(output_bps=16)
rgb_img = rgb.astype(np.float32) / 65536.0
return rgb_img
def get_tensor_from_raw_image(path, size=None):
rgb_float = read_raw_img(path)
if size:
if isinstance(size, Iterable):
rgb_float_resized = resize(rgb_float, (224, 224))
else:
# size was given as 1 number: match longer side if it exceeds size, else leave it small as it is
width, height, depth = rgb_float.shape
if width > size or height > size:
if width > height:
factor = size / width # width * factor = 1080 --> factor = 1080/width
else:
factor = size / height
new_width = int(width * factor)
new_height = int(height * factor)
rgb_float_resized = resize(rgb_float, (new_width, new_height)) # resize: (rows, cols)
else:
rgb_float_resized = rgb_float
else:
rgb_float_resized = rgb_float
img_tensor = transforms.ToTensor()(rgb_float_resized)
return img_tensor
def single_emd_loss(p, q, r=2):
if not p.shape == q.shape: error_callback('emd_loss')
length = p.shape[0]
emd_loss = 0.0
for i in range(1, length + 1):
emd_loss += torch.abs(sum(p[:i] - q[:i])) ** r
return (emd_loss / length) ** (1. / r)
def loss_with_l2_regularization(nima_result, filters, gamma=config.gamma, initial_filters=None):
if initial_filters is not None:
if len(filters) != len(initial_filters): error_callback('filter_length_l2loss')
desired_distribution = torch.FloatTensor(config.desired_distribution).view((-1, 10))
distance_term = sum(single_emd_loss(desired_distribution, nima_result))
if initial_filters is not None:
filter_deviations_from_initial = sum([(filters[x].item() - initial_filters[x]) ** 2 for x in
range(len(filters))]) # l2: sum the deviation from user preset
l2_term = filter_deviations_from_initial
print_msg("\nInitial Filters: {}".format(initial_filters), 3)
print_msg("Current Filters: {}".format([filters[x].item() for x in range(8)]), 3)
print_msg("Deviation from Initial: {}".format(filter_deviations_from_initial), 3)
print_msg("L2 Term: {}".format(l2_term), 3)
else:
l2_term = sum([fil ** 2 for fil in filters]) # l2: sum the squares of all filters
return distance_term + gamma * l2_term