From ea3e060e3636783f2651eb5d15cc91f2f791d176 Mon Sep 17 00:00:00 2001 From: Norman Gehrsitz <45375059+ngehrsitz@users.noreply.github.com> Date: Mon, 17 Jun 2024 01:56:55 +0200 Subject: [PATCH] Change numpy.NaN to numpy.nan for compatibility with numpy>2.0.0 --- meteostat/interface/normals.py | 4 ++-- meteostat/interface/timeseries.py | 4 ++-- meteostat/series/normalize.py | 8 ++++---- meteostat/units.py | 6 +++--- meteostat/utilities/aggregations.py | 4 ++-- meteostat/utilities/mutations.py | 2 +- 6 files changed, 14 insertions(+), 14 deletions(-) diff --git a/meteostat/interface/normals.py b/meteostat/interface/normals.py index 43b8a8f..aaab0d4 100644 --- a/meteostat/interface/normals.py +++ b/meteostat/interface/normals.py @@ -163,8 +163,8 @@ def normalize(self): else df ) - # None -> NaN - temp._data = temp._data.fillna(np.NaN) + # None -> nan + temp._data = temp._data.fillna(np.nan) # Return class instance return temp diff --git a/meteostat/interface/timeseries.py b/meteostat/interface/timeseries.py index e1967d2..19fb390 100644 --- a/meteostat/interface/timeseries.py +++ b/meteostat/interface/timeseries.py @@ -123,7 +123,7 @@ def _filter_model(self) -> None: (pd.isna(self._data[f"{col_name}_flag"])) | (self._data[f"{col_name}_flag"].str.contains(self._model_flag)), col_name, - ] = np.NaN + ] = np.nan # Conditionally, remove flags from DataFrame if not self._flags: @@ -131,7 +131,7 @@ def _filter_model(self) -> None: map(lambda col_name: f"{col_name}_flag", columns), axis=1, inplace=True ) - # Drop NaN-only rows + # Drop nan-only rows self._data.dropna(how="all", subset=columns, inplace=True) def _init_time_series( diff --git a/meteostat/series/normalize.py b/meteostat/series/normalize.py index fc2d54e..44cfea2 100644 --- a/meteostat/series/normalize.py +++ b/meteostat/series/normalize.py @@ -9,7 +9,7 @@ """ from copy import copy -from numpy import NaN +from numpy import nan import pandas as pd import pytz from meteostat.core.warn import warn @@ -56,7 +56,7 @@ def normalize(self): # Add columns for column in temp._columns[temp._first_met_col :]: # Add column to DataFrame - df[column] = NaN + df[column] = nan result = pd.concat([result, df], axis=0) @@ -70,8 +70,8 @@ def normalize(self): .first() ) - # None -> NaN - temp._data = temp._data.fillna(NaN) + # None -> nan + temp._data = temp._data.fillna(nan) # Return class instance return temp diff --git a/meteostat/units.py b/meteostat/units.py index ebfab7b..cee95a3 100644 --- a/meteostat/units.py +++ b/meteostat/units.py @@ -6,7 +6,7 @@ The code is licensed under the MIT license. """ -from numpy import NaN, isnan +from numpy import nan, isnan def fahrenheit(value): @@ -62,7 +62,7 @@ def direction(value): Convert degrees to wind direction """ - wdir = NaN + wdir = nan if (337 <= value <= 360) or value <= 23: wdir = "N" @@ -90,7 +90,7 @@ def condition(value): """ if isnan(value) or value < 1 or value > 27: - return NaN + return nan return [ "Clear", diff --git a/meteostat/utilities/aggregations.py b/meteostat/utilities/aggregations.py index 6740d1f..8375194 100644 --- a/meteostat/utilities/aggregations.py +++ b/meteostat/utilities/aggregations.py @@ -19,7 +19,7 @@ def weighted_average(step: pd.DataFrame) -> pd.DataFrame: data = np.ma.masked_array(step, np.isnan(step)) data = np.ma.average(data, axis=0, weights=data[:, -2]) - data = data.filled(np.NaN) + data = data.filled(np.nan) return pd.DataFrame(data=[data], columns=step.columns) @@ -30,7 +30,7 @@ def degree_mean(data: pd.Series) -> float: """ if data.isnull().all(): - return np.NaN + return np.nan rads = np.deg2rad(data) sums = np.arctan2(np.sum(np.sin(rads)), np.sum(np.cos(rads))) diff --git a/meteostat/utilities/mutations.py b/meteostat/utilities/mutations.py index c279d1a..52bb2f0 100644 --- a/meteostat/utilities/mutations.py +++ b/meteostat/utilities/mutations.py @@ -52,7 +52,7 @@ def adjust_temp(df: pd.DataFrame, alt: int): # Adjust values for all temperature-like data for col_name in temp_like: if col_name in df.columns: - df.loc[df[col_name] != np.NaN, col_name] = df[col_name] + ( + df.loc[df[col_name] != np.nan, col_name] = df[col_name] + ( temp_diff * ((df["elevation"] - alt) / 100) )